

OPERATOR'S MANUAL

PH 7685

pH/ORP CONTROLLER MICROPROCESSOR BASED

Rev. B Valid from S/N 54470 Valid for Options 091.3711 and 091.211

pH range: 0/14.00 pH ORP range: -1000/+1000 mV Temperature range: -11/+110 °C Power supply: 110/220 Vac

Software: R2.1x

1 FEATURES	
2 SPECIFICATIONS	
2.1 FUNCTIONAL SPECIFICATIONS	
2.2 TECHNICAL SPECIFICATIONS	
2.3 PHISICAL SPECIFICATIONS	
3 INSTALLATION	
3.1 PHYSICAL INSTALLATION	
3.2 ELECTRICAL INSTALLATION	
4 OPERATING THE SYSTEM	
5 SOFTWARE DESCRIPTION	
5.1 KEYBOARD	
5.2 READOUT SEQUENCES	
5.3 CALIBRATION SEQUENCES	
5.3.1 Manual/automatic mode selection	
5.3.2 pH and ORP electrodes calibration	
5.3.3 Temperature calibration	
5.3.4 Set-point A/B calibration	
5.3.5 On/Off function	
5.3.6 PFM proportional function (option 091.211)	
5.3.7 PWM proportional function (option 091.211)	
5.3.8 Alarm adjustment	
5.4 CONFIGURATION	
5.4.1 Keyboard locked/unlocked	
5.4.2 LCD display contrast	
5.4.3 Access number	
5.4.4 pH electrode type	
5.4.5 Software filter	
5.4.6 Input related to analog output n°1	
5.4.7 Analog output n°1 range	
5.4.8 Input related to analog output n°2 (option 091.3711)	
5.4.9 Analog output n°2 range (option 091.3711)	
5.4.10 Set-point A operating mode (option 091.211)	
5.4.11 Set-point A function	
5.4.12 Set-point B operating mode (option 091.211)	
5.4.13 Set-point B function	
5.4.14 Alarm on set-point A	
5.4.15 Alarm on set-point B	
5.4.16 Alarm relay contact function	
5.4.17 New access number	
6 NORMAL OPERATION.	
6.1 MANUAL OPERATION	
6.2 MANUAL TEMPERATURE COMPENSATION	
7 CALIBRATION	
7.1 CALIBRATING THE PH-METER	
7.2 CALIBRATING THE ORP-METER	
8 PREVENTIVE MAINTENANCE	

1 **FEATURES**

- * Input from pH electrode (Glass or Antimony) ORP electrode * Input from Pt100 3 wires
- * Alphanumeric back-lighted LCD
- * Temperature readout
- * Operating mode: automatic and manual
- * Calibration parameters display
 * Set-point and alarm conditions display
- * Automatic or manual Temperature compensation
- 0/20 mA or 4/20 mA selectable * Isolated output:
- * Dual set-points with selectable action:
 - On/Off
 - PFM proportional Pulse Frequency Modulation
 PWM proportional Pulse Width Modulation

 - with hysteresis, delay and min/max programmable functions
- * Min/max and set-points timing alarm relay
- * Software:
 - 3 access levels
 - user friendly
 - automatic/manual operating mode
 - automatic buffer solutions recognition
 - keyboard lock
 - watch-dog
- * EEPROM parameter storage
- * Automatic overload protection and reset * Extractable terminal blocks
- * 96X96 (1/4" DIN) housing

2 SPECIFICATIONS

2.1 FUNCTIONAL SPECIFICATIONS

<u>Input</u>

The instrument accepts input from a glass or Antimony pH electrode or ORP electrode.

A second input is provided for 3 wires Pt100 Temperature sensors.

Microtrasmitter input

The instrument is provided with an input for amplified probes with 080102 microtransmitter.

Temperature compensation

The unit is supplied with manual or automatic Temperature compensation and Temperature information may be displayed on the LCD. The instrument detects of the absence or malfunctioning of the Temperature sensor and automatically switches to manual compensation.

Analog output

Either a 0/20 mA or 4/20 mA isolated output may be selected, for use as an interface with computers or data loggers.

The output Current may be set anywhere from 0/14.00 pH or -1000/+1000 mV.

Control relays

The monitor is equipped with two SPDT control relays.

Each control relay may be programmed for set-point, high/low, hysteresis or delay time actuation.

The full display indicates the current settings and current status of each relay.

Alarm relay

The unit contains a third SPDT relay designated as an alarm relay.

This relay may be used to warn of conditions that may indicate operational problems. The relay will activate on either high/low value conditions, or on failure of the control relays to maintain proper control.

In addition this relay may be programmed for either normal or fail-safe operation.

Operating mode

The instrument is provided with 2 programmable modes of operation.

- Automatic operation:

The Automatic mode is the normal operation mode of the unit.

- Manual operation:

This mode of operation would normally be used for control system troubleshooting. The unit will allow the relays to be manually actuated by pushing up/down keys.

The letter "M" flashing on the display, indicates the instrument is in manual operation mode.

Calibration mode

The instrument recognizes the buffer solutions for the automatic pH and the ORP calibration. Manual calibration may also be performed.

Software filter

The unit is provided with a programmable software filter, to be inserted when the readout is not stable.

Configuration

A number of programming functions are provided in the Configuration menu and are protected by a selectable access number, which must be entered to allow changes in this setting.

Keyboard lock

The keys on the front panel of the monitor can be used for both changing the display and for calibrations and set-point adjustments.

When the monitor is shipped, all functions are accessible.

However, the adjustment and calibration functions may be locked in order to prevent unauthorized adjustments to the instrument.

Options	
<u>091.211</u>	PFM - PWM proportional action.
<u>091.3711</u>	Dual isolated and programmable output. Two outputs may be configured for pH(ORP) or Temperature.
<u>091.701</u>	RS232 isolated output. The output sends the data (pH, mV, °C) to the serial port of the computer.
091.404	24 Vac power supply.

2.2 TECHNICAL SPECIFICATIONS

The *Default* values are correspondent to the factory calibration values.

Parameters marked by " * " can be modified in the Configuration procedures.

OPERATING MODE	Default
Automatic/Manual	Auto
SENSOR TYPE	Default
* Glass pH/Antimony pH/ORP	Glass pH
pH Glass electrode: Slope: 59.16 mV/pH 25 °C mV at 7.00 pH: 0.0 Zero: +/- 2 pH Sens: 80%/110%	0.00 pH 100%
pH Antimony electrode: Slope: 50 mV/pH 25 °C mV at 7.00 pH: -325 Zero: +/- 2 pH Sens: 70%/140%	0.00 pH 100%
ORP electrode: Zero: +/- 100 mV Sens: 80%/110%	0mV 100 %
INPUT SCALE	Default
pH: 0.00 / 14.00 pH +/- 0.01 pH ORP: -1000 / 1000 mV +/- 1 mV * Software filter 90% RT: 0.4/50.0 sec	2.0 sec
TEMPERATURE	Default
Input: RTD Pt100 Connection: 2/3 wires Measuring and compensation range: -10.0/110.0 °C Resolution: +/1 °C Zero adjustment: +/- 2 °C Manual Temperature compensation: -10/110 °C	0°C 20°C

	Defende
SET-POINT A	Default
* Control functions: On/Off PFM - Pulse frequency modulation (option 091.211) PWM - Pulse width modulation (option 091.211)	On/Off
 * Function: On/Off Set-point (pH): 0.00/14.00 pH (Rx): -1000/1000 mV Hysteresis (pH): 0.00/1.50 pH (Rx): 0/150 mV Relay delay: 0.0/99.9 sec * Function: H/L (Max/Min) - pH - ORP 	0.00 pH 0 mV 0.00 pH 0 mV 0.0 sec HI LO
 Function: PFM (option 091.211) Set-point (pH): 0.00/14.00 pH (Rx): -1000/1000 mV Proportional band (pH): 0.00/1.50 pH (Rx): 0/150 mV Pulse frequency: 0/120 pulse/minute Pulse width: Function: H/L (Max/Min) - pH - ORP 	0.00 pH 0 mV 0.15 pH 15 mV 100 i/min 0.1 sec HI LO
 * Function: PWM (option 091.211) Set-point (pH): 0.00/14.00 pH (Rx): -1000/1000 mV Proportional band (pH): 0.00/1.50 pH (Rx): 0/150 mV Pulse width: 0/99.9 Sec. Min. pulse width: * Function: H/L (Max/Min) - pH - ORP 	0.00 pH 0 mV 0.15 pH 15 mV 20 sec 0.3 sec HI LO
Relay contacts: SPDT 220V 5Amps Resistive load	

SET-POINT B	Default		
	Defunit		
* Control functions:	On/Off		
On/Off			
PFM - Pulse frequency modulation (option 091.211)			
PWM - Pulse width modulation (option 091.211)			
* Function: On/Off			
Set-point (Rx): -1000/1000 mV	0 mV		
(pH): 0.00/14.00 pH	0.00 pH		
Hysteresis (Rx): 0/150 mV	0 mV		
(pH): 0.00/1.50 pH	0.00 pH		
Relay delay: 0.0/99.9 sec	0.0 sec		
* Function: H/L (Max/Min) - pH	LO		
- ORP	HI		
* Function: PEM (option 001 211)			
* Function: PFM (option 091.211) Set-point (Rx): -1000/1000 mV	0 mV		
(pH): 0.00/14.00 pH	0.00 pH		
Proportional band (Rx): 0/150 mV	15 mV		
(pH): 0.00/1.50 pH	0.15 pH		
Pulse frequency: 0/120 pulse/minute	100 i/min		
Pulse width:	0.1 sec		
* Function: H/L (Max/Min) - ORP	LO		
- pH	HI		
* Eurotian: DWM (antian 001 211)			
* Function: PWM (option 091.211) Set-point (Rx): -1000/1000 mV	0 mV		
(pH): 0.00/14.00 pH	0.00 pH		
Proportional band (Rx): 0/150 mV	15 mV		
(pH): 0.00/1.50 pH	0.15 pH		
Pulse width: 0/99.9 Sec.	20 sec		
Min. pulse width:	0.3 sec		
* Function: H/L (Max/Min) - ORP	LO		
- pH	HI		
Relay contacts: SPDT 220V 5Amps Resistive load			
ALARM (C-D contacts)	Default		
Low pH: 0.00/14.00 pH	0.00 pH		
High pH: 0.00/14.00 pH	14.00 pH		
Delay: 0.0/99.9 sec Low Rx: -1000/1000 mV	0.0 sec -1000 mV		
High Rx: -1000/1000 mV	1000 mV		
Delay: 0.0/99.9 sec	0.0 sec		
* Contact type: ACT/DEA	ACT		
* Alarm on max. SA: On/Off	OFF		
* Max. time SA: 0/60 min.	60 min		
* Alarm on max. SB: On/Off	OFF		
* Max. time SB: 0/60 min.	60 min		
Contacts: SPDT 220V 5Amps Resistive load			

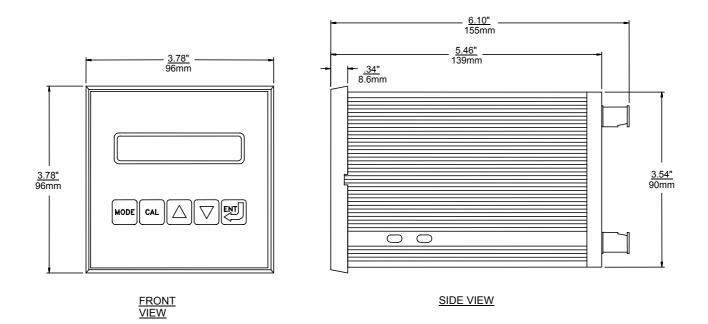
ANALOG OUTPUT Nr. 1	Default
 * Input: pH/mV/°C (option 091.3711) * Range: 0-20/4-20 mA * Point 1 (corresponding minimum mAmps): pH: 0.00/14.00 pH Rx: -1000/1000 mV °C: -10.0/110.0°C (option 091.3711) * Point 2 (corresponding to max. mAmps): pH: 0.00/14.00 pH Rx: -1000/1000 mV °C: -10.0/110.0°C (option 091.3711) Response time: 2.5 sec for 98% Isolation: 250 Vca R max: 600 ohm 	pH 0-20 mA 0.00 pH -1000mV -10.0°C 14.00 pH 1000mV 110.0°C
ANALOG OUTPUT Nr. 2 (option 091.3711)	Default
* Input: pH/mV/°C	mV
* Range: 0-20/4-20 mA * Doint 1 (corresponding to min mAmpa);	0-20 mA
* Point 1 (corresponding to min. mAmps): pH: 0.00/14.00 pH	0.00 pH
Rx: -1000/1000 mV	-1000mV
°C: -10.0/110.0°C	-10.0°C
* Point 2 (corresponding max. mAmps):	
pH: 0.00/14.00 pH	14.00 pH
Rx: -1000/1000 mV	1000mV
°C: -10.0/110.0°C	110.0°C
Response time: 2.5 sec per il 98%	
Isolation: 250 Vca R max: 600 ohm	
	I
RS232 OUTPUT (option 091.701)	Default

CONFIGURATION	Default
Parameters indicated by asterisks " * ",	
may be selected in the Configuration menu.	
Free calibration (access code not required):	
Keyboard locked/unlocked:	Unlocked
LCD contrast: (0/7)	4
	1
Under access code number (0):	
Sensor type	pH Glass
Software filter	2.0 sec
Input connected to the analog output N°1 (option 091.3711)	pH
Analog output N°.1 range	0/20 mA
Point 1 (for 0 or 4 mA)	0.00pH
Point 2 (for 20 mA)	14.00pH
Input connected to the analog output N°2 (option 091.3711)	pH
Analog output N°2 range (option 091.3711)	0/20 mA
Point 1 (for 0 or 4 mA) (option 091.3711)	0.00pH
Point 2 (for 20 mA) (option 091.3711)	14.00pH
Relay A channel	pH
Relay A action	Ōn/Off
Relay A function	HI
Relay B channel	ORP
Relay B action	On/Off
Relay B function	LO
Alarm on max. operating time of SA	OFF
Max. operating time of SA	60 m
Alarm on max. operating time of SB	OFF
Max. operating time of SB	60 m
Alarm relay status (ACT/DEACT)	ACT
Access number	0

GENERAL SPECIFICATIONS

Alphanumeric display: 1 line x 16 characters Acquisition time: 0.1 sec. Input current: < 2 pAmps (Channels 1 and 2) Input resistance: > 10 exp 12 (Channels 1 and 2) Operating temperature: 0/50 °C Humidity: 95% without condensation Power supply: 110/220 Vac +/- 10% 50/60 Hz Isolation: 4,000 volt between primary and secondary (IEC 348) Power: 5 VA max. Terminal block: extractable Weight: 850 g Dimensions: 96 x 96 x 155 mm

2.3 **PHISICAL SPECIFICATIONS**


The controller enclosure is designed for surface or panel mounting.

It consists of an anodized aluminium case built according to the standard DIN 43700, with an aluminium panel coated with scratch-proof and non-corrosive polycarbonate membrane.

A transparent waterproof front door SZ 7601 can be added to the housing, in order to protect the unit from excessive moisture or corrosive fumes.

Signal and power cable connections are made by using two special extractable terminal blocks placed in the back of the instrument. This makes wiring, installation and general maintenance of the probes and other devices easier.

The package is supplied complete with fixing clamps for panel-mounting.

3 **INSTALLATION**

3.1 PHYSICAL INSTALLATION

The controller may be installed close to the points being monitored, or it may be located some distance away in a control area.

The enclosure is designed for panel-mounting.

It should be mounted on a rigid surface, in a position protected from the possibility of damage or excessive moisture or corrosive fumes.

The cable from the probe must be protected by a sheath and not installed near to power cables.

Interruption on cables must be avoided or carried out by high insulation terminals.

When installing "in line" electrodes it is suggested to follow the specific instructions given by the sensor's manufacturer.

3.2 **ELECTRICAL INSTALLATION**

All connections within the controller are made on detachable terminal strips located on the rear side. (fig. 2)

All power and output-recorder connections are made at the 13 pin terminal strip, while input signal connections are made at the 12 pin terminal strip.

The electrical installation consists of:

Connecting the power

- connect ground to terminal 4
- connect ac power to 1 2 terminals if power voltage is 110 V connect ac power to 1 3 terminals if power voltage is 220 V
- if 091.404 option is installed, connect 24 VCA to 1-3 terminals

Warnings

- power the device by means of an isolation transformer
- avoid mains-voltage from an auto-transformer
- avoid mains voltage from a branch point with heavy inductive loads
- separate power supply wires from signal ones
- control the mains voltage value

Connecting the electrode

- as a rule the shield of the coax cable is connected to the Reference electrode and fastened to the terminal 21 "L1".
- The central shielded wire is connected to the pH glass or the ORP metal electrode and fastened to the terminal 22 "H1". (see connections diagram).
- keep the cable away from power wires on the overall length

Connecting probes with microtransmitter

See the instruction manual of the microtransmitter.

Connecting alarms, pumps, valves

The output connections referred to set-point A and set-point B are made at terminal strip and they consist of two independent SPDT relays corresponding to Regulator <u>A</u> and Regulator <u>B</u>.

The output connection referred to alarm consists of SPDT relay corresponding to Alarm C/D

Control relay "A"

			common contact
			normal open contact
terminal 7	marked	NC :	normal closed contact

Control relay "B"

terminal 9 marked C :	common contact
terminal 8 marked NO:	
terminal 10 marked NC :	normal closed contact

Alarm relay "C/D"

terminal 12 marked C :		
terminal 11 marked NO		
terminal 13 marked NC	:	normal closed contact

Connecting a recorder

A dual Current output for a remote recorder or P.I.D. regulators is available on terminals <u>14-15-16</u>.

Connect to terminals $\underline{14-16}$ for the 1st channel output. Connect to terminals $\underline{15-16}$ for the 2nd channel output. (option 091.3711)

Series connection is required for driving more loads having a total input Resistance lower than 600 ohm.

Output Current is 0/20 or 4/20 mA isolated.

Connecting the RTD

The instrument has the automatic Temperature compensation carried out by means of RTD Pt100.

The Temperature sensor has to be installed in the same solution being measured, close to the pH sensor in the pipe-line or in the tank.

To operate the automatic Temperature compensation, connect the RTD as shown in the "connection" figure.

3-wire connection

- connect the terminal of RTD to terminal <u>23</u> of the meter
- connect the common terminal of RTD to terminals 24 25 of the meter
- the 3 wire-cable must not be interrupted on the overall length.
- If an extension is needed, the cable must be fastened to the high insulation terminal strip.
- Keep the cable away from power wires.

The RTD connection as above described allows the controller to provide a digital readout of Temperature.

If the Temperature sensor is not connected or damaged, the unit will operate in manual Temperature compensation automatically.

2-wire connection

- connect the Pt100 to terminals 23 24
- install a jumper to terminals <u>24 25</u>.

Checking

Before connecting the system to the power supply:

- check that all cables are properly fastened to prevent strain on the connections
- check that all terminal-strip connections are mechanically and electrically sound

4 OPERATING THE SYSTEM

Pre-operation check

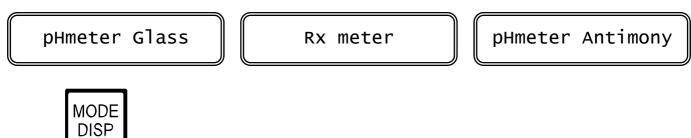
The system's controls and indicators are all located on the front panel (see fig. 1).

The meter has a LCD display $\underline{1}$ indicating that unit is on.

The cards of the controllers are adjusted at the factory.

If sensors and probes have been connected correctly, as described in the above sections, the system should function correctly needing only the start up and the parameters calibrations as described in the following section.

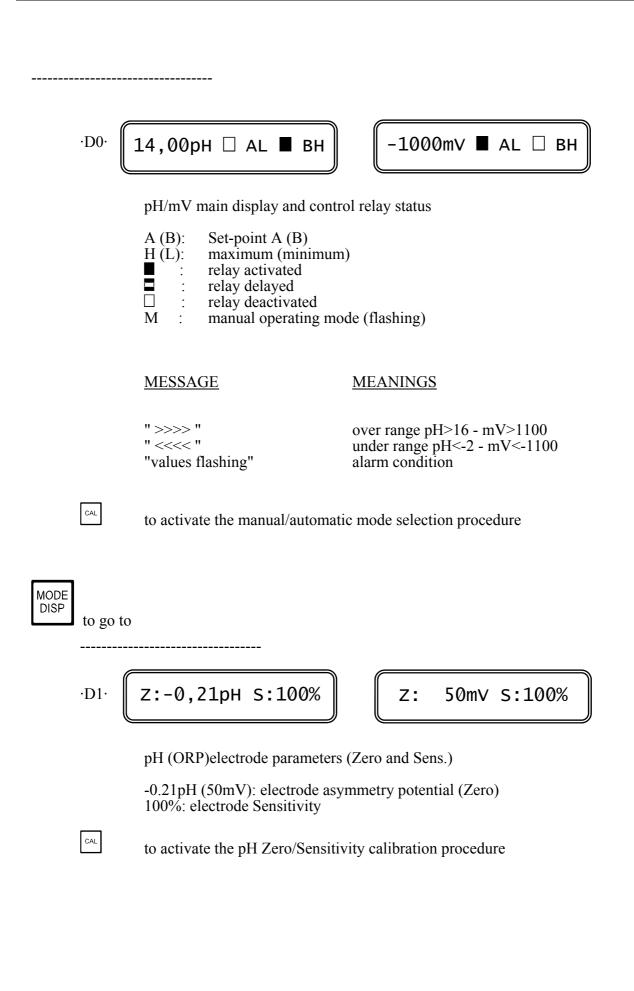
5 SOFTWARE DESCRIPTION

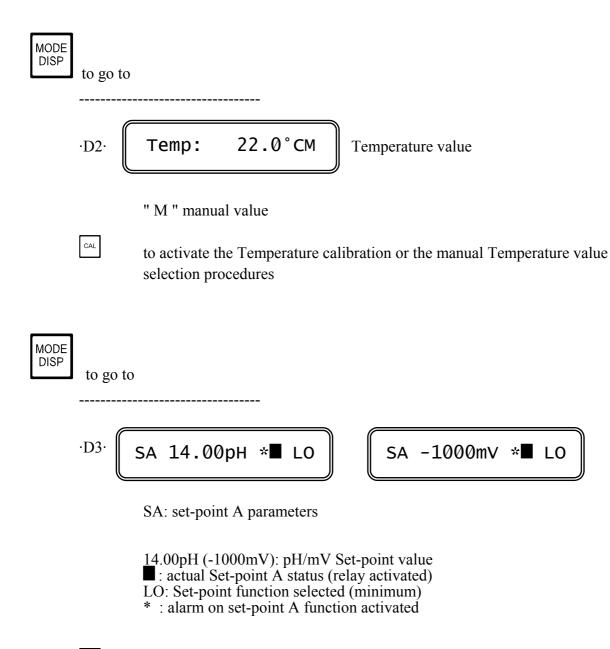

5.1 KEYBOARD

KEY FUNCTION

MODE DISP	 allows the operator to go to the next Display allows to go back to the main Display. The eventual new parameter values will not be memorized
CAL	- allows the access of calibration sequences
	 allows to increase the displayed parameters allows to choose between different functions
	 allows to decrease the displayed parameters allows to choose between different functions
	 allows to enter the selected data and to return to the main Display D0

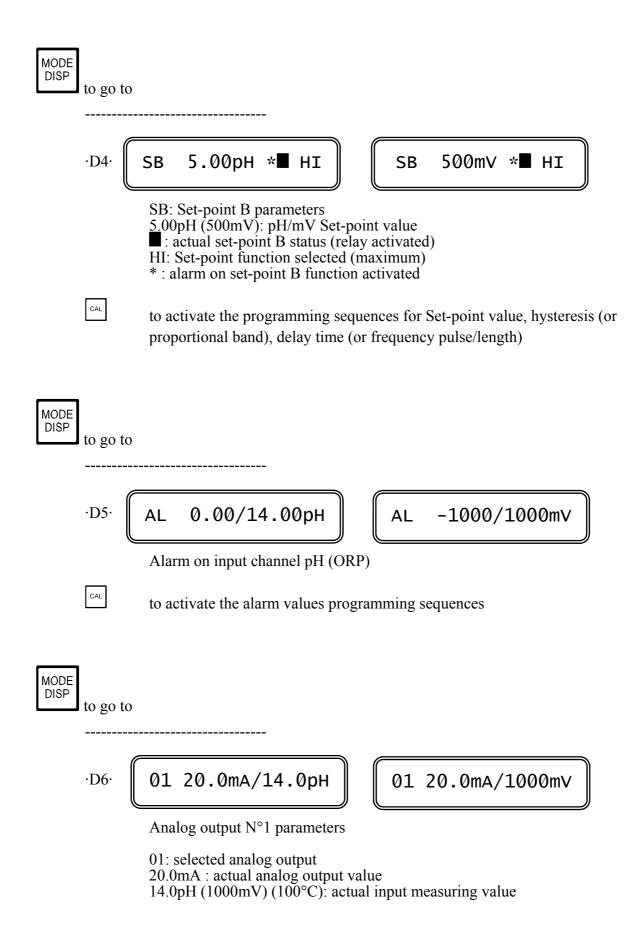
5.2 READOUT SEQUENCES

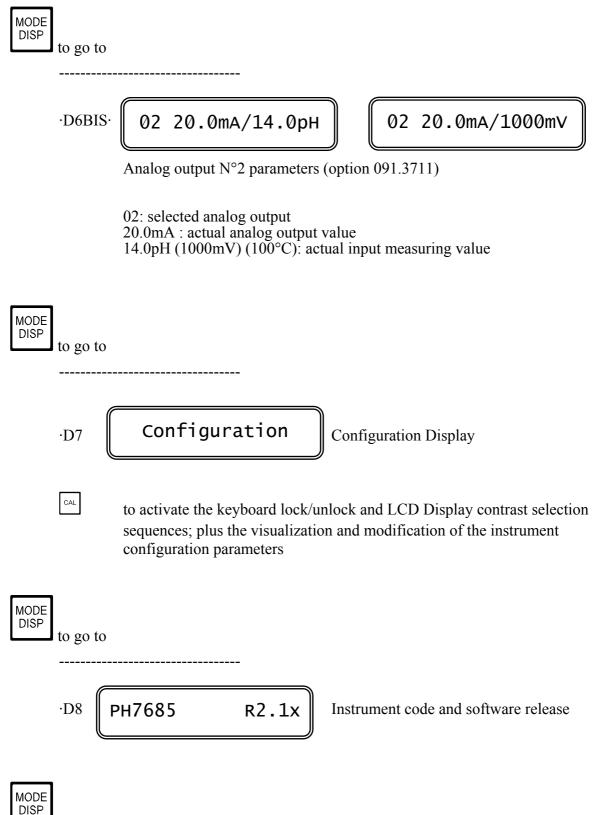

Applying the power to the instrument the display will show the input selected for approximately 3 seconds, then will show the main display \cdot DO \cdot .



Press

to visualize the following Display:


D0	14,00ph □ al ■ BL	Actual pH and ORP values, Set-point status/functions
D1	Z:-0,21pH S:100%	pH/ORP electrode parameters
D2	Temp: 22.0°CM	Temperature value
D3	SA 14.00pH *∎ LO	Set-point A parameters
D4	ЅВ 5.00рН *□ НІ	Set-point B parameters
D5	AL 0.00/14.00pH	Alarm on input channel pH (ORP)
D6	01 20.0mA/14.0pH	Analog output N°1 parameters
D6BIS	02 20.0mA/14.0pH	Input/analog output N°2 values (option 091.3711)
D7	Configuration	Configuration display
D8	PH7685 R2.1x	Instrument code and software release



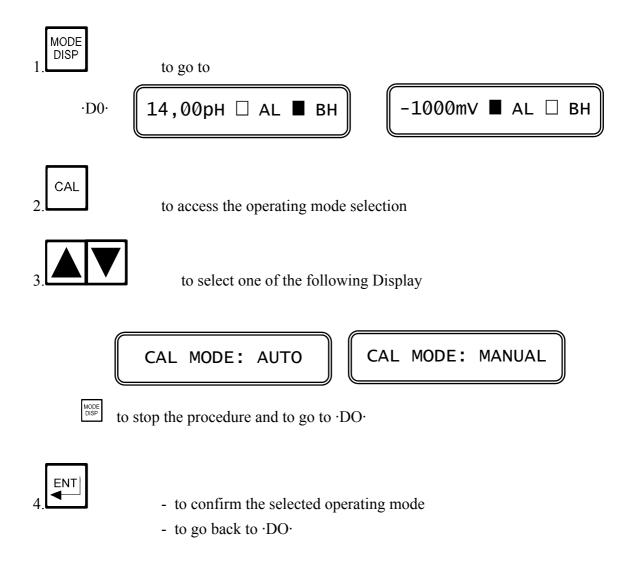
CAL

to activate the programming sequences for Set-point value, hysteresis (or proportional band), delay time (or frequency pulse/length)

to go back to the main Display $\cdot DO$.

5.3 CALIBRATION SEQUENCES

The following procedures will be active whenever the instrument is not in the keyboard lock condition.

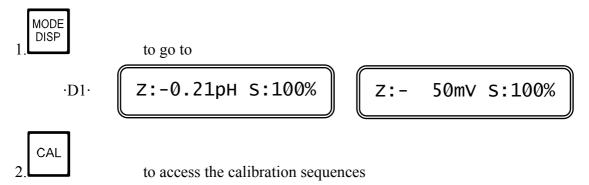

To unlock the keyboard follows the procedures mentioned in chapter "Configuration".

The following procedures allows the sensors calibration, the Set-point and alarms parameters programming.

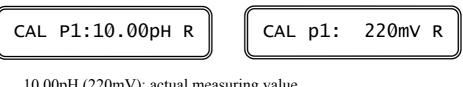
5.3.1 Manual/automatic mode selection

Normally the instrument works in automatic mode.

Follow this procedure to change operating node Automatic/manual.


the selection is memorized

 $\underline{N \text{ O T E}}$: The next calibrations follows the same proceeding, so only the active keys will be shown.

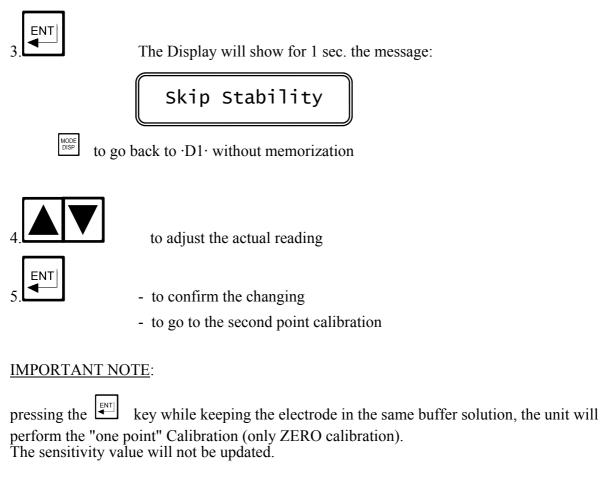

5.3.2 pH and ORP electrodes calibration

The following procedure are suitable for both pH and ORP and for this reason will be described simultaneously.

- pH electrode calibration by automatic recognition of the buffer solutions type SZ959 (see B&C Electronics catalogue)
- ORP electrode calibration by automatic recognition of the buffer solutions type SZ961 and SZ962 (see B&C Electronics catalogue)
- pH/ORP electrodes calibration by manual adjustment of buffer solutions values.

First point adjustment (P1)

10.00pH (220mV): actual measuring value R (flashing): stability checking


The "R" message (ready) will flash until the measure stability is reached. While flashing, keys will not be active.

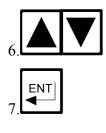
As soon as the "R" message stop flashing the instrument will try to recognize the buffer solution in which the electrode is immersed.

If the buffer is not recognized the "B" flashing message will appear on the Display.

If the buffer is recognized the "B" message will stop flashing and the instrument will Display the value related to the measuring Temperature.

If the readout stability will not be reached ("R" flashing), the operator may adjust manually the value in the following way:

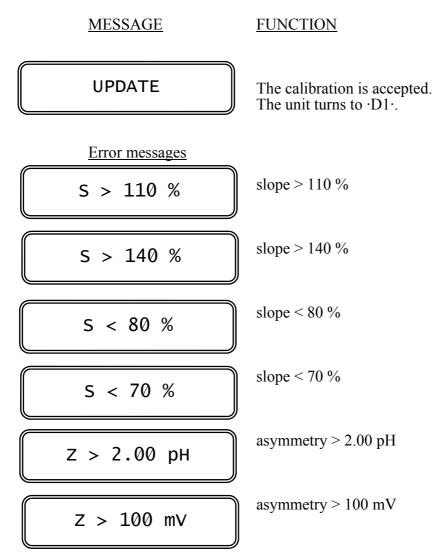
Second point adjustment (P2)


CAL P2: 7.00pH R

CAL p2: 500mV R

Follow the same procedure as per 1st point calibration.

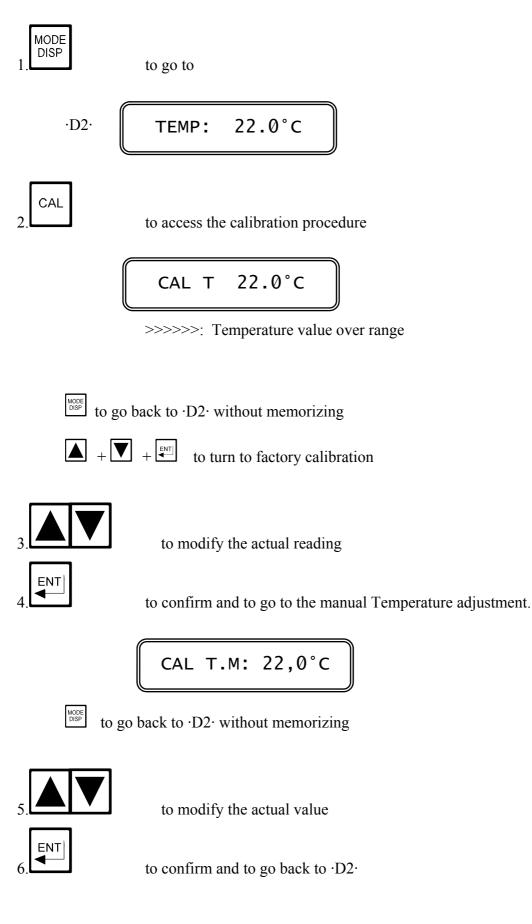
to go back to ·D1· without memorization

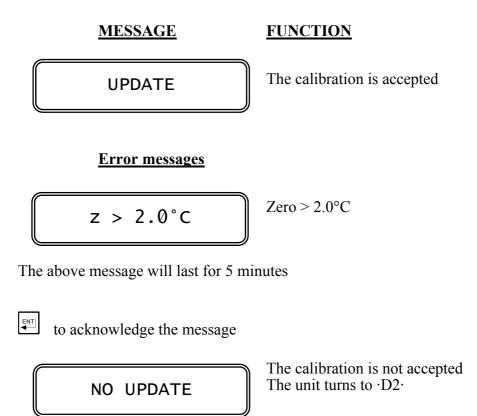


to adjust the actual reading

- to confirm the changing
- to go back to ·D1· Display

<u>IMPORTANT NOTE</u>: if the difference between 1st and 2nd point is less than 1 pH (or 100 mV), the unit will consider only the 1st point (ZERO adjustment).

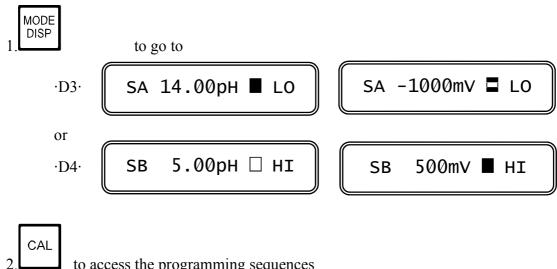

The above messages will last for 5 minutes.


To acknowledge the error messages

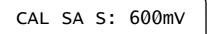
NO UPDATE

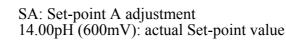
The calibration is not accepted. The unit turns to $\cdot D1 \cdot$.

5.3.3 Temperature calibration



5.3.4 Set-point A/B calibration


The following procedure are suitable for both Set-point A and B. For each Set-point it is possible:


- to insert the Set-point value -
- to insert the hysteresis or Proportional band -
- to insert the Delay time, the Pulse length, the Pulse frequency

to access the programming sequences

Set-point adjustment

to stop the procedure and to go back to $\cdot D3 \cdot (\cdot D4 \cdot)$

to insert the Set-point value

to confirm and to go to the next step

5.3.5 On/Off function

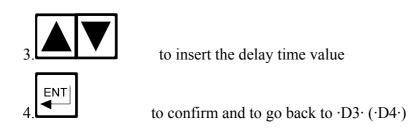


CAL	SA	I:	15m∨

0.15pH (15mV): actual hysteresis value

to stop the procedure and to go back to $\cdot D3 \cdot (\cdot D4 \cdot)$

to insert the hysteresis value



to confirm and to go to the delay time selection

5.0 s: actual delay time value

MODE DISP

to stop the procedure and to go back to $\cdot D3 \cdot (\cdot D4 \cdot)$

5.3.6 **PFM** proportional function

CAL SA BP:0.15 pH CAL SA BP: 15mV

0.15pH(15mV): actual proportional band value

MODE DISP

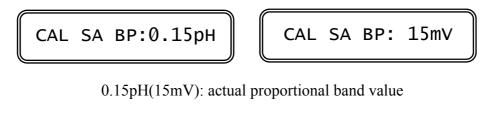
to stop the procedure and to go back to $\cdot D3 \cdot (\cdot D4 \cdot)$

to select the proportional band value

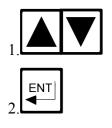
to confirm and to go to the selection of the maximum pulse frequency value

100 i/s: actual pulse frequency value

to stop the procedure and to go back to $\cdot D3 \cdot (\cdot D4 \cdot)$



to select the frequency value (0/120 pulse/minute)



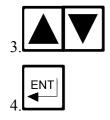
to confirm and to go back to $\cdot D3 \cdot (\cdot D4 \cdot)$

5.3.7 PWM proportional function

to stop the procedure and to go back to $\cdot D3 \cdot (\cdot D4 \cdot)$

MODE DISP

to select the proportional band value


to confirm and to go to the selection of the pulse length value

CAL SA D: 5.0s

5.0 s: actual pulse length value

to stop the procedure and to go back to $\cdot D3 \cdot (\cdot D4 \cdot)$

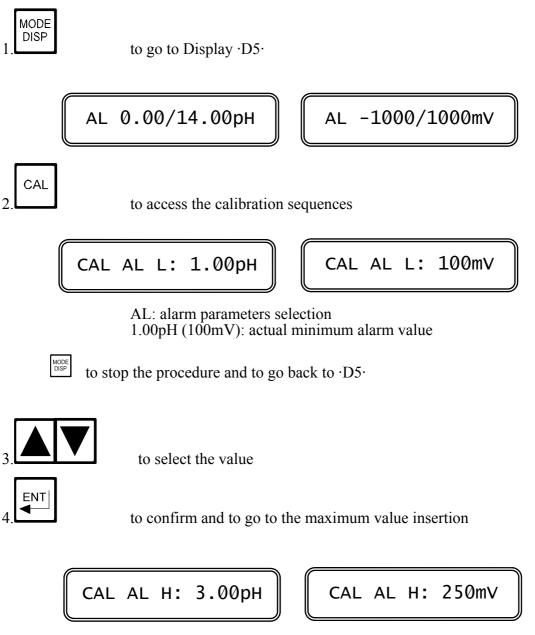
to select the pulse length value (0/99.9 seconds)

to confirm and to go back to $\cdot D3 \cdot (\cdot D4 \cdot)$

MESSAGE

FUNCTION

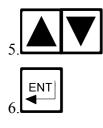
UPDATE


all the data has been memorized

5.3.8 Alarm adjustment

Both alarms (for ph and for ORP) acts on the same relay C.

The following operations are possible:


- to select the min/max alarm value
- to select the delay time value

3.00pH (250mV): actual maximum alarm value

to stop the procedure and to go back to $\cdot D5\cdot$

to select the value.

to confirm and to go to the delay time selection.

1.0s: actual delay time

to stop the procedure and to go back to $\cdot D5$.

MODE DISP

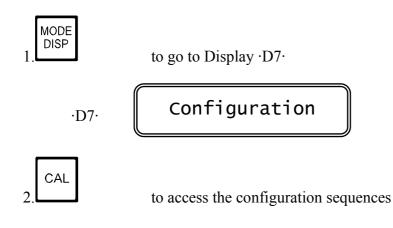
to insert the value

to confirm and to go back to $\cdot D5$.

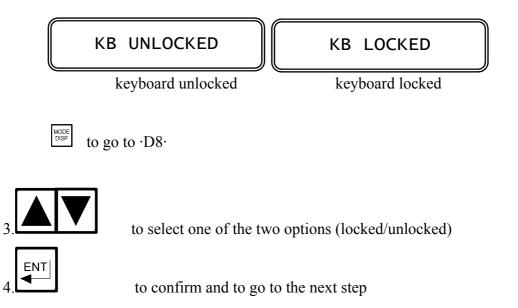
MESSAGE

FUNCTION

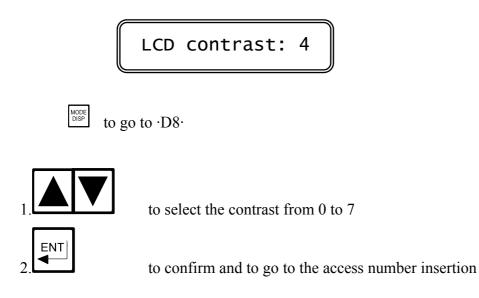
UPDATE

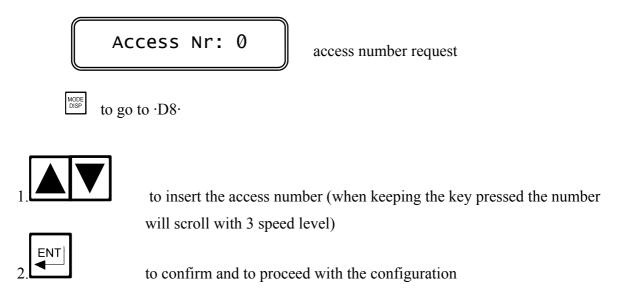

the new data have been memorized

<u>IMPORTANT NOTE:</u> during the calibration procedure the microprocessor turn the unit to the main Display if no keys have been pressed within 5 minutes.


CONFIGURATION 5.4

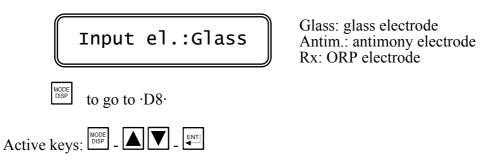
The following operations are possible:


- keyboard locked/unlocked selection
 Display contrast selection
- access number insertion

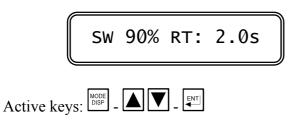

5.4.1 Keyboard locked/unlocked

5.4.2 LCD display contrast

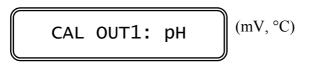
5.4.3 Access number



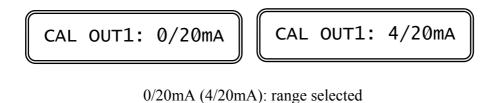
<u>IMPORTANT NOTE</u>: any inserted number different from the right access code, will allow the visualization of the parameters and not the modification.


Cal Inhibition

Configuration inhibited


5.4.4 pH electrode type

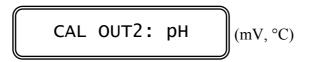
5.4.5 Software filter


5.4.6 Input related to analog output n°1

pH: input selected for analog output N°1

Active keys:	MODE DISP	-		▼	-		
--------------	--------------	---	--	---	---	--	--

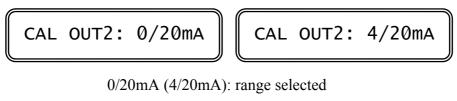
5.4.7 Analog output n°1 range

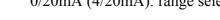


Active keys: $\square P = \square P = \square P$

CAL P1: 0.00 pH
P1: begin of range 0.00 pH (mV): measuring value related to 0/4 mA
Active keys: DISP - A - H
CAL P2: 14.00 pH
P2: end of range 14.00 pH (mV): measuring value related to 20 mA
Active keys: $\boxed{\text{MODE}}$ - $\boxed{\text{Active keys}}$

<u>IMPORTANT NOTE:</u> if the value related to P1 is higher than the value related to P2 the analog output will be the "reverse", otherwise will be the "direct" type.

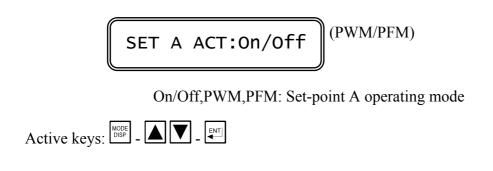

5.4.8 Input related to analog output n°2 (option 091.3711)



pH: input selected for analog output N°2

Active keys:	MODE DISP	_		▼	-		
--------------	--------------	---	--	---	---	--	--

5.4.9 Analog output n°2 range (option 091.3711)



CAL P1: 0.00 pH
P1: begin of range 0.00 pH (mV): measuring value related to 0/4 mA
Active keys: $\square D P = \blacksquare \square \square = \blacksquare$
CAL P2: 14.00 pH
P2: end of range 14.00 pH (mV): measuring value related to 20 mA
Active keys: $DSP = A = A$
N TO DE ANT NOTE

<u>IMPORTANT NOTE:</u> if the value related to P1 is higher than the value related to P2 the analog output will be the "reverse", otherwise will be the "direct" type.

5.4.10 Set-point A operating mode (option 091.211)

5.4.11 Set-point A function

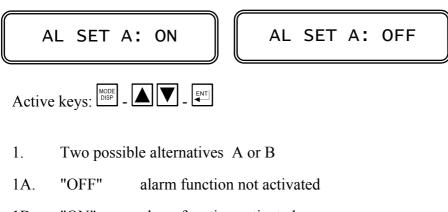
LO: Minimum (relay activated for meas. below Set-point) HI: Maximum (relay activated for meas. above Set-point)

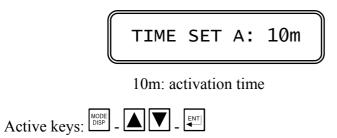
Active keys: DISP - A T - ENT

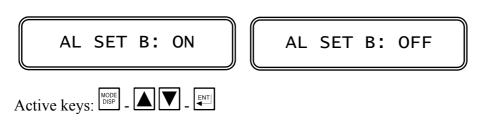
5.4.12 Set-point B operating mode (option 091.211)

On/Off,PWM,PFM: Set-point B operating mode

Active keys:	-			-		
--------------	---	--	--	---	--	--

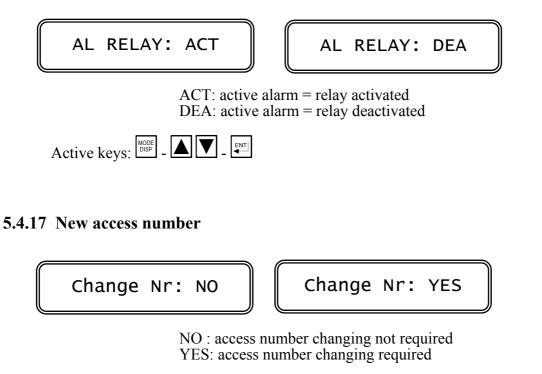

5.4.13 Set-point B function


LO: Minimum (relay activated for meas. below Set-point) HI: Maximum (relay activated for meas. above Set-point)


5.4.14 Alarm on set-point A

- 1B."ON"alarm function activated
- 2B. to insert the activation time for Set-point A

5.4.15 Alarm on set-point B



- 1. Two possible alternatives A or B.
- 1A. "OFF" alarm function not activated
- 1B. "ON" alarm function activated
- 2B. to insert the activation time for Set-point B

	TIME	SET	B:	10m	
	10m	: activa	ation	time	
Active keys:					

5.4.16 Alarm relay contact function

Two possible alternatives:

Two possible alternatives A or B.

- A. "NO" The unit will go back to the Configuration Display; the operator may verify the parameter setting before leaving the Configuration sequences which is now protected by access number.
- B. "YES" The unit is now ready to the new access number selection

	New Nr:	0	
Active keys:			_

The instrument ask the operator to insert again the new access number.

	Confirm Nr:	0
Active keys:		

The double insertion of the new code assure the memorization of the right code.

As soon as the new code is memorized the message "UPDATE" will appear.

Should the operator insert two different numbers, the instrument will not modify the access number and the message "NO UPDATE" will be shown.

press several time the key to verify the selected parameters selected before leaving the Configuration routine.

6 NORMAL OPERATION

To operate the system, simply power the unit and observe the measured pH or ORP of the solution on the meter.

Select the Set-point A, the Set-point B and the alarms to the setting required for each particular application (see Set-point calibration and alarm sections)

6.1 MANUAL OPERATION

When the instrument is programmed for the manual operation (see Calibration sequences) the flashing "M" will appear on the Display.

Analog outputs and alarm relay will remain activated.

while pressing the key, A relay will be activated.

while pressing the key, B relay will be activated.

6.2 MANUAL TEMPERATURE COMPENSATION

The manual compensation is in alternative to the automatic compensation.

Do not install the RTD and select the Temperature value and the Temperature coefficient value (see Temperature and Temperature compensation section).

7 CALIBRATION

7.1 CALIBRATING THE PH-METER

The pH controller is supplied with a laboratory calibration corresponding to a standard pH electrode with the "zero point" at pH=7 and the "slope" 58,16 mV/pH at 20 °C.

It is possible to turn to the Factory calibration by pressing \checkmark \checkmark keys (see Calibration Sequences).

Before using the electrode and/or the pH calibration, check that the glass membrane has been stored wet.

If the protective boot results empty and the electrode is dry, immerse the electrode in a buffer solution or tap water (do not use distilled water) for 3 hours before operating. See general instruction given by the electrode manufacturer.

The unit recognizes the buffer solutions mod. SZ959 a pH=4 pH=7 pH=9.

Immerse the electrode in the buffer solution pH=7 and calibrate the <u>zero</u> following the point 1 calibration.

Immerse the electrode in the buffer solution pH=4 or pH=9 and calibrate the <u>slope</u> following the point 2 calibration.

Temperature compensated operations need special procedure when calibrating the meter:

- the pH value has to be considered at the working Temperature of the buffer solution
- before calibrating, immerse the electrode and the RTD Pt100 in the buffer solution and adjust the value after the Temperature sensor has reached the thermal equilibrium. Check periodically the calibration.

7.2 CALIBRATING THE ORP-METER

The ORP controller is supplied with a laboratory calibration by means of Vdc generator.

It is possible to turn to the Factory calibration by pressing keys (see Calibration Sequences).

In order to calibrate the ORP electrode, follow the calibration instruction by using the buffer solutions mod. SZ 961 (mV 220) ed SZ 962 (mV 420), automatically recognized by the unit.

8 PREVENTIVE MAINTENANCE

Controller

Quality components are used to give the controller a high reliability. The frequency of such maintenance depends of each particular application.

As in any electronic equipment, the mechanical components, such as relays and connectors, are the most subject to damage.

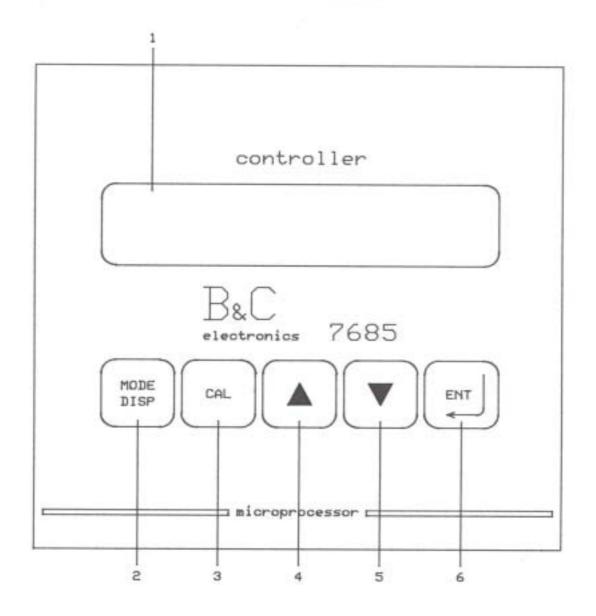
- check for damage of the electrolytic capacitors if the meter is exposed to temperatures above 80 degree C.
- check for damage in all the electronic components if the meter is subjected to excessive voltage
- check for damage of the electronic and mechanical components if the meter is dropped
- repeat periodically the pre-operation check
- check that all the connections are free from moisture and contamination

Disconnect the power supply to the monitor before performing the following procedures:

Use moisture free air and blow out the interior of the case and terminal board connections as necessary.

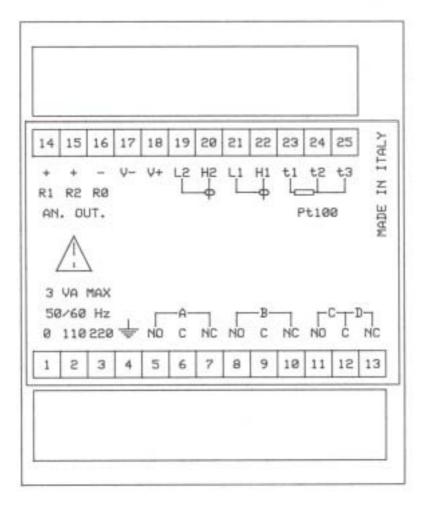
Inspect the printed circuit boards for dirt and corrosion; clean as necessary and blow dry.

Tighten all the terminal-board connections and mounting hardware


Replace the front panel circuit board or the base circuit board

Sensor

The state of the electrode's surface is critical for the normal operation of the system and should be inspected more frequently when using alkaline liquids, oil and grease containing water, and bio-applications.


Suggested methods for cleaning the electrode include chemical cleaning (except hydrofluoric acid) and detergent washing.

DIGITAL CONTROLLER

- 1. DISPLAY
- 2. MODE-DISPLAY KEY
- 3. CALIBRATION KEY
- 4. INCREASE KEY
- 5. DECREASE KEY
- 6. ENTER KEY

FIG. 1

REAR PANEL CONNECTIONS PH7685

1. 2	110 V. POWER SUPPLY
1. 3	220 V. POWER SUPPLY
4.	GROUND (POWER)
5. 6	A RELAY N.O. CONTACTS
6. 7	A RELAY N.C. CONTACTS
8. 9	B RELAY N.O. CONTACTS
9.10	B RELAY N.C. CONTACTS
11.12	C RELAY N.O. CONTACTS (OPTION)
12.13	D RELAY N.C. CONTACTS ALARM
14.	RECORDER OUTPUT CHANNEL 1 (+)
15.	
16.	RECORDER OPTION CHANNELS 1 AND 2 (-)
17.18	OUT POWER SUPPLY FOR EXTERNAL CIRCUITS
19.	LOW INPUT (REFER.) CHANNEL 2 (OPTION)
20.	HIGH INPUT (GLASS) CHANNEL 2 (OPTION)
21.	LOW INPUT (REFER.) CHANNEL 1
22.	HIGH INPUT (GLASS) CHANNEL 1
23,24,25	INPUT TEMPERATURE COMPENSATION

FIG. 2

CONTENITORE DIN 43700 MOD. 7685 NOR Л 96 Ŵ 96 £10 ψ 5 8 122 ŝ PIANO DI FORATURA DRILL PLAN 10 91,5 V 91,5

FIG. 3