

MEASUREMENT PROBE T-UV-BCT

TOSHNIWAL INSTRUMENTS MANUFACTURING PVT. LTD., (An ISO 9001:2015 Company) P.O. Gagwana – 305023, Distt. Ajmer (Raj.) INDIA Phone: 0145-2971131/ 2/ 3 Email: info@toshcon.com Website: www.toshcon.com Regd. Office: 401, Manish Chamber, Sonawala Cross Lane, Goregaon (E), Mumbai - 63

CONTENTS

	INTRODUCTION	G
<u></u>		0
1.1. 1 2	Parameters analyzed Application fields	6 7
1.2.	Application helds Measurement principle	7
1.5.	Fauinment description	/ 8
1.1.		0
<u>2.</u>]	INSTALLATION	12
2.1.	Installation synoptic	13
2.2.	Assembling the transmitter	14
2.3.	Power supply connection	14
2.4.	Positioning the probe	15
<u>3.</u>	SETTING UP THE PROBE	22
3 1	Navigating between menus	22
3.2	Entering numbers and letters	22
3.3.	Icon bars on the screen	23
3.4.	Step by step configuration	24
3.5.	Contrast settings	27
3.6.	Setting the date and time	28
3.7.	Setting up the alarm thresholds	29
3.8.	Setting up the analysis cycles	33
3.9.	Control signals	35
3.10.	Analog outputs	36
3.11.	Modbus link	38
3.12.	Password protection	41
<u>4.</u>	CALIBRATION - PROCEDURE Nº1	44
4.1.	Principle	44
4.2.	Equipment required	45
4.3.	Calibration procedure	45
4.4.	Sample analysis	46
4.5.	Entering the laboratory measurements	49
4.6.	Deleting a sample	51
4.7.	Managing the calibration bases	52
4.8.	Selecting the active calibration base	53
4.9.	Manual entry of calibration coefficients	54
4.10.	Assigning calibration bases to measurement channels	56

T-UV-BCT

5. CALIBRATION - PROCEDURE N°2	58
5.1. Principe5.2. Equipment required5.3. Calibration procedure5.4. Coefficients determination	58 59 59 62
6. USING THE TRANSMITTER	64
 6.1. Measurement displays 6.2. Saving measurements to a USB flash drive 6.3 Displaying the data using Microsoft Excel[®] 	64 66 67
	07
7. MAINTENANCE	70
7. MAINTENANCE7.1. Routine maintenance7.2. Current output calibration	70 70 71
 7. MAINTENANCE 7.1. Routine maintenance 7.2. Current output calibration 7.3. System files 7.4. Software upgrades 7.5. Manufacturor 	70 70 71 73 74 75
 7. MAINTENANCE 7.1. Routine maintenance 7.2. Current output calibration 7.3. System files 7.4. Software upgrades 7.5. Manufacturer 8. APPENDICES	70 70 71 73 74 75

Chapter 1 INTRODUCTION

1. INTRODUCTION

The *T-UV-BCT* is a multi-parameter online measurement probe for continous and independent quality control of water and effluent. It measures the SAC 254 and the SAC 560 directly. It also provides an estimation of the **TOC** or **COD** or **BOD** and the **suspended solids** through correlation of the SAC measurements and laboratory measurements.

1.1. PARAMETERS ANALYZED

- TOC (mgC/L): Total Organic Carbon
 Total quantity of organic carbon by chemical means.
- **COD (mgO2/L): Chemical Oxygen Demand** Total quantity of oxygen consumed by chemical means.
- **BOD (mgO2/L): Biochemical Oxygen Demand** Total quantity of oxygen consumed by chemical means.
- Suspended Solids: (mg/L) Mass of non-soluble particles found in the water with a dimension of between 1 and 100 mm.
- SAC 254 (UA/m): Spectral Absorption Coefficient Optical absorption of the effluent at a wavelength of 254 nm.
- SAC 560 (UA/m): Spectral Absorption Coefficient Optical absorption of the effluent at a wavelength of 560 nm.
- COLOR (mgPt/l : color measured at 560 nm.

1.2. APPLICATION FIELDS

- Natural water
- Used water
- Industrial effluent

1.3. MEASUREMENT PRINCIPLE

The sample to be analyzed undergoes to separate radiations. The first is emitted in the ultraviolet range at a precise wavelength of 254 nm, thesecond is generated in the visible range of the electromagnetic spectrum at a wavelength of 560nm. Depending on its chemical composition, the sample will absorb different degrees of radiation at these two wavelengths. The quantity of light absorbed in the UV at 254 nm is termed the SAC 254 and the proportion of light absorbed at 560 nm is termed the SAC 560.

Beer-Lambert's law defines the relation between the measured absorption (SAC) and the sample concentration. The calibration is calculated automatically by the device which determines line of regression between the SAC and he tvalues obtained in a laboratory setting for the different samples.

1.4. EQUIPMENT DESCRIPTION

The *T-UV-BCT* system is made up of a measurement probe, a transmitter and an optional module for compressed air cleaning (E8492 - *T-UV-BCT Cleaning Box*).

1.4.1. The transmitter

This is an IP65 electronic box with dimensions of $130 \times 130 \times 100$ mm. It collects the digital signals coming from the probe and processes them in order to determine the SAC and the concentrations in COD and Suspended Solids.

The transmitter includes a "datalogger" function allowing several years' worth of data to be stored at the maximum measuring frequency. This data can easily be transferred to a USB flash drive.

The front panel of the transmitter features the following elements:

- a 132x64 rear-lit **LCD display** providing optimal visibility and displaying the results in large easy-to-read characters.
- two **alarm** lights that show red when an alarm threshold set up by the user is exceeded.
- a **tactile 8-key keypad** for setting up the parameters.

The **lower part** features 4 cable inputs equipped with cable glands for the following connections:

- the power supply (110V-220V)
- the measurement probe
- the optocoupled inputs and the relay outputs
- the 4-20mA current outputs
- the E8492 cleaning module

On the side, a hermetic USB port allows the user to retrieve the data recorded by the device quickly and easily using a USB flash drive.

1.4.2. The probe

This is a 316L stainless steel tube that is 25 cm long and 55 mm wide.

The lower part has two grooves in which the liquid to do be analyzed will circulate. On the upper part there is an electric cable for connection to the transmitter and also a non-return valve. The valve serves as a connector for the E8492 compressed air cleaning module.

The optical measurements are carried out directly inside the probe by a microprocessor system. The optical signals are immediately converted into digital values and are relayed to the transmitter.

1.4.3. The cleaning module

Compressed air cleaning system is optional but recommended in order to keep the measurement optics clean the longest and minimize the maintenance frequency. The compressed air cleaning module offers two versions: E8492-P and E8492-E.

- **E8492-P**: this module features an independent compressed air generator system driven by the transmitter. This system is dedicated for installation without a compressed air network close by. Yet, the pressure of the generated compressed air cannot exceed 1.2 bar what limits the immersion depth of the probe to a maximum of 10 meters. <u>Maximal pressure</u>
 - Input: forbidden, must stay at atmospheric pressure.
 - Output: maximum pressure generated by the module: 1.2 bar.
- **E8492-E**: This model features a normally closed electrovalve driven by the transmitter during the cleaning periods/times. The module air Input is directly connected to the local compressed air network and at the output of the non-return valve on the probe. <u>Maximal pressure</u>
 - Input: 5 bar max
 - Output: 5 bar maxi

If you do not use the cleaning module E8492 (P or B), the maximum allowed pressure on the probe compressed air connection is 5 bar.

Chapter 2 INSTALLATION

2. INSTALLATION

List of material provided:

- an E8489 stainless steel probe complete with 10 metres of cable
- an E8490 transmitter
- an E8492 cleaning module (optional)
- 10 metres of plastic tubing for the compressed air (optional)
- the cabling connections
 - 3 x 2-pin female screw terminals,
 - 5 x 3-pin female screw terminals,
 - 1 x 4-pin female screw terminal
- a cleaning brush
- a USB flash drive
- a user manual

2.1. INSTALLATION SYNOPTIC

	Compressed air ø ext. 6 mm		Type : Legris	length : 10 m
	tube	ø int. 4 mm	Ref: 8492-P01-V1	
2	Transmitter to	ø ext. 8 mm max	Ref: E8489-C01-V2	length : 10 m
	probe link			
3	Communication link	RS485 link	Customer equipment	
4	Cleaning box	ø ext. 7,8 mm max	Ref: E8492-C01-V1	length : 400 mm
	command link	2x 1.5 ²		
5	Main power cable	ø ext. 7,8 mm max	Ref: E8492-C02-V1	length: 400 mm
	to connect E8490	3G 1.5 ²		
6	Main power cable	ø ext. 7,8 mm max	Customer equipment	

2.2. ASSEMBLING THE TRANSMITTER

2.3. POWER SUPPLY CONNECTION

If both transmitter and cleaning box are used, main power should be connected first to the cleaning box. Then a second electrical cable must link the Cleaning box supply to the transmitter supply connector.

2.4. **POSITIONING THE PROBE**

The probe carries out optical measurements so **it is important to protect the measurement head from direct light** Sunlight or lamplight close to the measurement orifices may have an impact on the results.

When the cleaning module is used, it is recommended that the probe be inclined at least 30° degrees from its vertical position to prevent air bubbles from becoming trapped in the measurement grooves.

2.4.1. ELECTRIC CONNECTIONS

2.4.2. overall view of the connectors

X1	Link with the probe (E8490C01V1)
X2	RS485 link with the Supervisor PC
X3	Two 4/20mA current outputs
X4	Relay output 1
X5	Relay output 2
X6	Relay output 3(links with E8492)
X7	Opto-coupled input 1
X8	Opto-coupled input 2
X9	Mains + earth
X10	Earth
J9	Jumper to select logical input level (5V : ON or 24V : OFF)
J10	Jumper to select logical input level (5V : ON or 24V : OFF)
F3	Protective fuse on the mains input
F2	Protective fuse on the probe power supply

2.4.3. Mains connection

The transmitter requires an AC sinusoidal power supply (50 to 60Hz) of between 115V and 230V using connector X9.

	X9 wiring		
Pin	Name	Description	
1	Phase	Mains phase	
2	Earth	Earth	
3	Neutral	Mains neutral	

2.4.4.<u>ModBus Link</u>

The ModBus link of the *T-UV-BCT* is designed for use in RS485 mode: 1 differential pair (2 wires).

With 2-wire cabling, the same pair of wires is used to transmit requests from the supervisor to the *T-UV-BCT* and to transmit the devices responses.

	RS485 Supervisor	Transmitter 1	Transmitter 2	Transmitter n
	TX+ / RX+ (A)	TX+ / RX+	TX+ / RX+	TX+ / RX+
	TX- / RX- (B)	TX- / RX-	TX- / RX-	TX- / RX-
Terminal resistor	Yes	No	No	Yes
Terminal resistor	Une seule pa	aire sur tout le rése superv	au, généralement a viseur.	au niveau du

RS485 : 1 master (supervisor) and several slaves (transmitters)

	X2 wiring			
Point	nom	Description		
1	TX - / RX -	Negative signal		
2	TX+ / RX+	Positive signal		

2.4.5.4/20mA current ouputs

		4/20 mA current outputs	
	СОЛ	X3.1 output 1	
Transmitter	OOD	X3.2 GND	Automaton
i i uno interi	SS	X3.3 output 2	
	00		

X3 wiring			
Pin	Name	Description	
1	Output 1	Current loop output 1	
2	GND	Current loop 1 and 2	
3	Output 2	Current loop output 1	

4-20mA outputs are isolated from the ground.

2.4.6. Isolated logical inputs

X7 wiring			
Pin	Name	Description	
1	GND	Ground	
2	IN1	24 V or 5 V input	

X8 wiring			
Pin	Name	Description	
1	GND	Ground	
2	IN1	24 V or 5 V input	

		Jumpers configuration
J9	NC	24 V input
	С	5 V input
J10	NC	24 V input
	С	5 V input

2.4.7. Isolated relay outputs

The 3 *T-UV-BCT* relay outputs transmit alarms to the external world. Each threshold is settable independently. The 3 relays are isolated together. They can each short-circuit a line with 8 amps and 240 V AC maximum. The relay 3 is dedicated to the cleaning box. It starts and stops the cleaning following the setting.

X4 wiring		
1	NF	Normally closed contact
2	COM	Common
3	NO	Normally opened contact

X5 wiring		
1	NF	Normally closed contact
2	COM	Common
3	NO	Normally opened contact

Relay output #3 is dedicated to the cleaning module driving n°3 (X6).

X6 wiring		
1	NF	Normally closed contact
2	COM	Common
3	NO	Normally opened contact

2.4.8. Probe connection (X1)

X1 wiring		
1	RX/TX-	Serial link (black)
2	RX/TX+	Serial link (white)
3	GND	Ground (red)
4	+12V	Probe power supply 12V DC (green)

2.4.9. Cleaning module wiring E8492

X1	Main power supply 115-230Vac
X2	Main power to E8490 via 3G1.5 ² cable reference E8492C02V1
X3	Cleaning box command connection, thanks to transmitter relay 3 and via cable
	reference E8492C01V1
X5	Earth connection
F1	Main power fuse 1AT

Chapter 3 CONFIGURATION

3. SETTING UP THE PROBE

3.1. NAVIGATING BETWEEN MENUS

The key enables you to access the sub-menus and to confirm values you have entered.

The key enables you to quit the sub-menus or to cancel a value you have entered.

3.2. ENTERING NUMBERS AND LETTERS

Numbers are always entered in a special data entry box. A dialogue box will enable you to enter either just numbers or numbers and letters.

3.2.1. Entering numbers

₽€

scroll through the digits 0 to 9 and the symbols "+""-" and "."

validates the entry.

3.2.2. Entering numbers and letters

√

scroll through the digits 0 to 9, the symbols "+" "-" "." and the letters A-Z

validates the entry.

3.2.3. During data entry

\Diamond	erases the last character entered, assuming that the entry box is not empty.
	moves on to the next character.
*	cancels the parameter editing process if nothing has been entered in the box.
\checkmark	confirms the data entry.

Name of the page

being displayed

3.3. ICON BARS ON THE SCREEN

Default icon !: should any error occur X: communication error between the probe and the transmitter

Measurements0.0COD
mg02/l
TSS
gg/l0.0D</td

Once the probe has been installed, the probe must be set up in order to take into account all the specifics of the installation so as to obtain the best performance possible.

Similarly, we recommend verifying the set-up after software update so as to best take advantage of any new functions.

3.4. STEP BY STEP CONFIGURATION

It is not necessary to set up all the parameters of the device since a large proportion of these parameters are the settings for the inputs/outputs, alarms and advanced functions. It is always possible to refine the set-up at a later date.

The "typical configuration" given below outlines the main parameters.

Once the device has been switched on, the set-up mode can be accessed from any measurement screen.	Measurements 0.0 COD mgO2/I 0.0 TSS mg/I 23/11/2017 12:00:00
Choose SETUP from the menu	< 1 Setup > 2 Calibration 3 Data export. 4 Maintenance
Choose ANALYSE from the menu and and	 1 Date / time 2 Alarms 3 Analog out. < 4 Analyse > 5 Miscellan.
	<c<ch 1="" param="">>> Trigger TIMER Period mn 1 Pulse src NONE Gate src NONE Gate Out NONE</c<ch>

 Set the parameter TRIGGER to TIMER Image: the parameter TRIGGER to TIMER	< <ch 1="" param="">> <trigger timer=""> Period mn 1 Pulse src NONE Gate src NONE Gate Out NONE</trigger></ch>
 Set the TIMER PERIOD to the required measurement frequency (one analysis every minute in the example opposite). 	< <ch 1="" param="">> Trigger TIMER PERIOD : 1 Gate Out NONE</ch>
• Set the PULSE SOURCE to NONE. +	<< CH 1 Param Trigger TIMER Period mn 1 <pulse none="" src=""> Gate src NONE Gate Out NONE</pulse>
 Set the GATE SOURCE tO NONE. Image: A state of the source of	<< CH 1 Param >> Trigger TIMER Period mn 1 Pulse src NONE <gate none="" src=""> Gate Out NONE</gate>
 Set the GATE OUT tO NONE. Image: Image: Image:	<< CH 1 Param >> Trigger TIMER Period mn 1 Pulse src NONE Gate src NONE < Gate Out NONE>

 Select the line CHANNEL1 PARAMETERS with then validate with then validate with then validate with the validate with the set-up common to all the analysis channels is displayed. 	<<< CH 1 Paraর Trigger TIMER Period mn 1 Pulse src NONE Gate src NONE Gate Out NONE
• Choose CLEANING PERIOD +	< Global Param> < Clean per. 0 >
 Set CLEANING PERIOD 5 mins. (for example one cleaning every 5 minutes). <u>+</u> <u></u>	<global param=""> < Clean per. 0 PERIOD : 5</global>
	<pre><global param=""> < Clean per. 5 ></global></pre>

Press to return to the ANALYSE menu	1 Date / time 2 Alarms 3 Analog out. < 4 Analyse > 5 Miscellan.
• Press to return to the SETUP menu	< 1 Setup > 2 Calibration 3 Data export. 4 Maintenance
 Press to return to the MEASUREMENT screens. Message "Saving parameters please wait" 	Measurements 0.0 COD mgO2/I 0.0 TSS mg/I 23/11/2017 12:00:00

3.5. CONTRAST SETTINGS

3.6. SETTING THE DATE AND TIME

Choose SETUP from the menu	< 1 Setup > 2 Calibration 3 Data export. 4 Maintenance
Choose DATE / TIME with	< 1 Date / time > 2 Alarms 3 Analog out. 4 Analyse 5 Miscellan.
 Use the arrow keys and to move the cursor around Adjust with the arrow keys and Validate with 	HourMinsec140352DayMonthYear100117

Don't forget to change the time on the transmitter for the hour change between summer and winter, where appropriate

3.7. SETTING UP THE ALARM THRESHOLDS

 The <i>T-UV-BCT</i> can only monitor the parameters measured within a pre-determined range and will alert the user if this range is exceeded. Choose SETUP from the menu 	< 1 Setup > 2 Calibration 3 Data export. 4 Maintenance
 To set up this surveillance, select the parameter required and validate. Choose ALARMS + 	1 Date / time < 2 Alarms > 3 Analog out. 4 Analyse 5 Miscellan.
ALARM SETTINGS	
COD ALARM SETTINGS COD: Chemical Oxygen Demand Press the key	Name Min Max Out < DCO > TSS S254 S560 Global Alarm N
 Enable: active surveillance YES, inactive NO. Use to choose Yes or NO 	DCO Alarm settings Enable Min Max Output D01

 Min: Minimum thresholds. Press the keys + 	DCO Alarm settings Enable Min Max Output D01
 Press the keys and and Validate with 	DCO Alarm settings Enable Yes Min DCO : 100 Output D01
 Max: maximum thresholds. Press the keys + 	DCO Alarm settings Enable Min Max Output Col > D01
 Press the keys and and Validate with . 	DCO Alarm settings Enable Yes Max DCO : 500 Output D01
 Output: Relay output to be activated if a threshold is exceeded (min. or max.) Press the keys Use to choose DO1, DO2 or NONE 	DCO Alarm settings Enable Min Max Output Yes 100 500 <d01></d01>

DCO ALARMS SETTINGS	
Alarm settings for DCO parameter	Name Min Max Out < DCO
- Mimimum: 100	TSS
- Maximum: 500	S254
- Out: DO1	S560
Quit this menu with	Global Alarm N
TSS ALARMS SETTINGS	
TSS = suspended solids	TSS. alarm settings
TSS: mass of non soluble particles to be found in the water	Enable < Yes >
whose dimension is between 1 and 100 mm.	Min 0
• To setting up the TSS alarms, use the same procedure.	
S254 ALARMS SETTINGS	
	S254, alarm settings
SAC 254: Ontical absorption of the effluent at a wavelength	
of 254 nm.	Enable < Yes >
	Min 0
 To setting up the SAC 254 alarms, use the same 	Max 0
procedure.	
S560 ALARMS SETTINGS	
	S560. alarm settings
SAC 560: Optical absorption of the effluent at a wavelength	
of 560 nm.	Enable < Yes >
• To setting up the SAC 560 alarms, use the same	
יייייייייייייייייייייייייייייייייייייי	
procedure.	

GLOBAL ALARMS SETTINGS	
Global alarm : This function is used to assign the general error to one of the 4 relay outputs (any error arising from either the transmitter or the probe).	Name Min Max Out DCO 100 500 1 TSS S254 S560 <global< td=""> Alarm N></global<>
 Use the keys and to choose between NONE, DO1 or DO2 Validate with Validate with 	Global Alarm settings <pre></pre>

3.8. SETTING UP THE ANALYSIS CYCLES

 Setting up the analysis cycles enables you to set up your transmitter according to your requirements and to your particular installation. Choose SETUP from the menu 	< 1 Setup > 2 Calibration 3 Data export. 4 Maintenance
 The main parameters concern: triggering the analyses: either periodically or via an external pulse. setting up the validation gate: authorizing and preventing measurements. cleaning cycle frequency. Choose ANALYSE + 	1 Date / time 2 Alarms 3 Analog out. < 4 Analyse > 5 Miscellan.
 Channel selection: CHANNEL Press to scroll through the set-up pages for the input channels in turn, as well as the general parameters page. Each measurement channel can be set up separately. 	<< <ch 1="" param="">>> Trigger TIMER Period mn 1 Pulse src NONE Gate src NONE Gate Out NONE</ch>
Analysis triggering type: TRIGGER NONE: no analysis of this channel. TIMER: periodical analysis triggering. PULSE: triggering via an external contact.	<< CH 1 Param >> <trigger timer=""> Period mn 1 Pulse src NONE Gate src NONE Gate Out NONE</trigger>

 Measurement frequency: PERIOD. Press to enter the analysis frequency of this measurement channel in minutes. this menu is only active if Trigger is set to PERIOD. The measurement frequency PERIOD cannot exceed 99 minutes. 	<< CH 1 Param >> Trigger TIMER <period 1="" mn=""> Pulse src NONE Gate src NONE Gate Out NONE</period>
 External triggering: PULSE SRC. Press to scroll through the 2 On-Off inputs in turn. This menu is only active if TRIGGER is set to PULSE. See the chapter 2.4.6 	<< CH 1 Param >> Trigger TIMER Period mn 1 < Pulse src NONE > Gate src NONE Gate Out NONE
 Press to scroll through the 2 inputs in turn. This function enables you to temporarily inhibit measurements on a channel depending on the status of an on-off input on the transmitter. See chapter 2.4.6 	<< CH 1 Param >> Trigger TIMER Period mn 1 Pulse src NONE <gate none="" src=""> Gate Out NONE</gate>
 Analysis relay outputs: GATE OUT. Choose the relay output to be activated during the analysis cycles. 	<< CH 1 Param >> Trigger TIMER Period mn 1 Pulse src NONE Gate src NONE <gate none="" out=""></gate>
 Cleaning period: CLEAN PER. (page 2) Choose the cleaning frequency of the measurement cell using compressed air. 	<pre><global param=""> < Clean per. 5 ></global></pre>

3.9. CONTROL SIGNALS

Example of how control signals are used.

Supposing that the probe is analyzing an effluent in a tank equipped with a dry contact level sensor. If the tank is empty, then the contact is open and the probe should not be measuring. The analyses are triggered by a dry contact output on the automated system every 30 minutes. The result of the COD measurement is transmitted to a 4-20mA output.

The three control signals used are:

- PULSE SOURCE (DI1): input for triggering an analysis
- GATE SOURCE (DI2): validation gate input of an analysis (takes priority over PULSE SOURCE)
- **ANALYSE GATE OUT (DO1)**: analysis gate output (active when an analysis is underway).
- OUTPUT 4-20 N°1 (A01): monitoring of the COD measurement to the automated system.

Device set-up screens		
The output START of the automated system is connected to the input DI1 of the transmitter (Trigger = PULSE, PULSE SRC = DI1)and the signal indicati ng the presence of water to the input DI2 (GATE SRC = DI2).	<< CH 1 Param >> Trigger PULSE Period mn Pulse src DI1 <gate di2="" src=""> Gate Out NONE</gate>	
The automated system is informed that an analysis is underway by the signal GATE OUT which is directed to the output DO1 (ANALYSE GATE OUT = DO1).	<< CH 1 Param >> Trigger PULSE Period mn Pulse src DI1 Gate src DI2 < Gate Out DO1 >	

3.10. ANALOG OUTPUTS

The two analog outputs will enable you to transmit the measurements in analog form (current loop) to an external device (eg: an automated system).

Each output can be separately associated with one of the parameters being measured, in the range desired. If the measurement associated with a 4-20 mA output is not available, this output will indicate 4 mA.

The analog outputs are initialized at 4 mA:

- when the device starts up
- if a measurement error should occur

The analog outputs keep the same value:

- during the measurement cycles
- during and after the cleaning cycles
- if an analysis gate is set up and the measurement is ignored.

The analog outputs are refreshed pro-rata with the associated measurement:

- at the end of each measurement cycle
- always before the end of the signal "analyse Gate out" (if used)

If necessary, use the output "**analyse Gate out**" to synchronize your external equipment with the analysis cycle.

The analog outputs are respectively associated with the COD and TSS measurements of channel 1. The output range will represent the ranges 0-1000 for the COD and 0- 500 for the suspended solids. AO: output 1 or 2 P: measurement assigned to the 4/20mA output. Ch: use the measurements from channel 1. Min: COD value for 4mA. Max: COD value for 20mA.	Analog Outputs Set. AO P Ch Min Max < 1 C 1 0 1000 > 2 S 1 0 500
• Use to select between DCO, suspended solids	AO1 settings Param. Channel LO range 0 HI range 1000
 Select LO range with Enter the value with and Valid with 	AO1 settings Param. COD LO range: 0 HI range 1000
 Select HI range with Enter the value with and Valid with 	AO1 settings Param. COD HI range: 0 HI range 1000

3.11. MODBUS LINK

Choose SETUP from the menu	< 1 Setup > 2 Calibration 3 Data export. 4 Maintenance
Choose MICELLANEOUS	1 Date / time 2 Alarms 3 Analog out. 4 Analyse < 5 Miscellan .>
Setting up the ModBus RS485 link. ModBus Address: address of the probe on the ModBus network. This address must be unique on the ModBus network.	< 1 Mbus Adr 1 > 2 Password Disa
Communication settings: - Modbus RTU protocol - 9600 bauds - 8 bits data - 1 stop bit - even parity	< 1 Mbus Adr 1 > 2 Password Disa Modbus adr. : 0

A supervisor software must use MODBUS function code03 to read the data and code 16 to write the data.

USER

MANUAL

Refer to Modicon Modbus Reference Guide for complete information about Modbus communication standard.

All registers are **READ ONLY** and encoded as 32 bits floating datas. This means that two 16 bits registers are used to encode one 32 bits data. (For more information, refer to IEEE Standard for Floating-Point Arithmetic (IEEE 754) which is a technical standard established by the Institute of Electrical and Electronics Engineers (IEEE) and the most widely used standard for floating-point computation).

EXAMPLE:

To display COD value, supervisor as to read 16 bits registers 5 and 6. Register 5 contains the 16 LSB of the floating data and register 6 contains the 16 MSB of the floating data.

Register 5 value: 0x0000 Register 6 value: 0x4120

32 bits floating register is: 0x41200000 which represent IEEE754 decimal value 10.0

MODBUS REGISTER TABLE				
Add	dress Acces (*) Unit		Unit	Function
DEC	HEX			
0	0	R		Reserved
1	1	R		Global_alarm (0=no alarm 1=alarm)
2	2	R		Reserved
3	3	R		Reserved
4	4	R		Reserved

5	5	R	(mg/l)	COD ® 16 LSB
6	6	R	(mg/l)	COD ® 16 MSB
7	7	R	(mg/l)	TSS ® 16 LSB (see page 44)
8	8	R	(mg/l)	TSS ® 16 MSB
9	9	R	UA/cm	SAC 254 ® 16 LSB (see page 58)
10	А	R	UA/cm	SAC 254 ® 16 MSB
11	В	R	UA/cm	SAC 560 ® 16 LSB <i>(see page 58)</i>
12	С	R	UA/cm	SAC 560 ® 16 MSB
13	D	R		Reserved
14	E	R		Reserved
15	F	R		Reserved
149	95	R		Mode (0=measurements 1=settings)

(*) R = Read W = Write

3.12. PASSWORD PROTECTION

 You can choose to limit access to the set-up functions of the device by using a password. This will allow any user to visualize the measurements while restricting access to complex functions except for qualified personnel. Choose SETUP from the menu 	< 1 Setup > 2 Calibration 3 Data export. 4 Maintenance
Choose MICELLANEOUS	 Date / time Alarms Analog out. Analyse Miscellan .>
 Press the keys + to choose PASSWORD The password is a 4-digit number. Example of a password: 1234 	< 1 Mbus Adr 1 > 2 Password Disa

3.12.1. Enter a password

3.12.2. Modify a password

Enter the initial password

Password Enab is displayed

3.12.3.Invalidate a password

Mbus Adr 1

< 2 Password Enab>

Password: 1234

Enter the initial password

Mbus Adr 1

Pwd disabled

The password is invalided

< 2

Password Enab>

Enter a NEW password

Confirm the new password

Password Disa is displayed

confirm 0 as the password

Chapter 4 CALIBRATION - procedure N°1

4. CALIBRATION - PROCEDURE N°1

4.1. PRINCIPLE

The calibration procedure is what allows the correlation coefficients to be determined between the optical measurements **CAS 254** and **CAS 560** and the overall pollution measurements **TOC, COD, BOD** and **TSS**.

The *T-UV-BCT* measures the concentration in organic matter of theeffluent and from this calculates the equivalent in COD. This correlation depends on the composition of the samples analyzed. The calibration procedure allows the device to calculate this relationship (calibration coefficients) for your effluent by promaring the optical measurements to laboratory measurements.

This calibration should be carried out at least once after the device has been installed and may be repeated from time to time to ensure that the system is working properly. Before beginning, check the *T-UV-BCT* probe set-up and that it is working normally.

This procedure is used to calibrate parameters displayed on "MEASUREMENT" screen

Parameters are chosen before ordering.

- one parameter between TOC, COD, BOD (line 1)
- The TSS parameter (line 2)

Parameters	Parameters displayed
TOC: Total Organic Carbon	= TOC
COD: Chemical Oxygen Demand	= COD
BOD : Biochemical Oxygen Demand	= BOD
TSS: Suspended Solids	= TSS
CAS 254: Spectral Absorption Coefficient	= SAC 254
CAS 560: Spectral Absorption Coefficient	= SAC 560
COLOR	= COLOR

4.2. EQUIPMENT REQUIRED

- a container filled with 2 litres of clear water for rincing the probe
- a sample of approximately 5 litres of the effluent
- an appropriate container for the sample that will go to the laboratory.

4.3. CALIBRATION PROCEDURE

The calibration procedure can be broken down into 4 steps:

	Sampling the effluent to be analyzed.			
Step 1	 Take a sample of the effluent as close as possible to the <i>T-UV-BCT</i>. This sample will be used both for the laboratory measurements and the probe measurements (take 2 litres for the probe plus the volume necessary for the laboratory. Verify that the sample is homogenous: if necessary, shake the container gently without creating an emulsion. 			
	Laboratory analysis of the sample.			
Step 2	 Put the quantity required for the laboratory analysis into an appropriate container. If the analysis cannot be carried out quickly, maintain the sample at temperature of 4°C. 			
Step 3	 Analysis by the <i>T-UV- BCT</i> of the sample. The remainder of the sample will be analyzed by the <i>T-UV- BCT</i> : follow the procedure outlined in chapter 4.4. 			
	Enter the laboratory measurement.			
Step 4	Enter the measurement obtained from the laboratory into the <i>T-UV-BCT</i> : follow the procedure outlined in chapter 4.5.			

4.4. SAMPLE ANALYSIS

Before starting to analyze a sample, make sure that you have followed the right calibration procedure.

The calibration of the *T-UV-BCT* is based on the comparison between the laboratory measurements and those of the probe. The analysis of the sample is an essential step in the calibration process. The system will guide you through the different phases so as to reduce as much as possible the risk of user error.

Choose CALIBRATION from the menu	1 Setup < 2 Calibration > 2 Data export. 3 Maintenance
 This command allows you to analyze a sample and obtain the values measured by the device. In this example, the analysis of the sample will be added to the correlation base number 1 Choose SAMPLE BASE1 from the menu 	<1 Sample BASE 1> 2 Lab BASE 1 3 Base select. 4 Base assign.
 The <i>T-UV-BCT</i> numbers the samples automatically. This number increases each time a new sample analysis is added. Confirm the analysis or abandon with . 	Please Confirm Sample 1 Base 1

The measurement of the « white » takes a few seconds.			
 Analyze the sample Place the probe in the tank containing the sample to be analyzed, then validate the analysis with . 	Plunge Probe into sampling tank and Confirm the operation		
The sample analysis takes a few seconds.	Plunge Probe into sampling Analyse running Please wait		

Reference the sample If the measurement is carried out correctly, the device will ask you to specify whether the sample analyzeds a reference solution for calibrating the zero setting or a point of a known concentration.	Plunge Probe into sampling < Zero Buffer > Range Buffer
	Saving parameters please wait

After the analysis and with the exception of zero setting, the <i>T-UV-BCT</i> displays the references of the sample. This is made up of a number, and the date and time of the analysis. Make a note of this information because it will make it easier to find this particular analysis in the list of measurements when you enter the laboratory measurements.	Please Reference Sample 3 12/12/16 12:11:59
• Finish with	

If the absorption of the sample is too high to allow a correct measurement (saturation), the *T-UV-BCT* will indicate this with an error message. The sample must then be diluted in order to carry out the calibration.

4.5. ENTERING THE LABORATORY MEASUREMENTS

After analyzing a sample of your *T-UV-BCT*, you must enter the "laboratory" measurements corresponding to the sample.

•	Choose CALIBRATION from the menu Press the keys + +	1 Setup < 2 Calibration > 2 Data export. 3 Maintenance
•	Choose LAB BASE1 from the menu Press the keys $+$ $+$	1 Sample BASE 1 <2 Lab BASE 1> 3 Base select. 4 Base assign.
•	From the list, choose the sample whose information you are adding and valid with In the example opposite, the laboratory values of COD and TSS have been entered for samples 1 and 2.	Lab Measurements ID COD TSS < 001
•	Press to select Edit	< 1 Edit > 2 Delete

٦

 Enter the laboratory measurements of COD and SS corresponding to the sample. If a field is left empty, it will not be taken into account in the correlation. 	EDIT SAMPLE Sample 001 Base 1 Date 12/12/16 Time 10:56:42 < COD 31 TSS 12
• Enter COD value then validate	EDIT SAMPLE Sample 001 Base 1 Date 12/12/16 COD value: 50 TSS 12
• To quit, Press 🔀 .	EDIT SAMPLE Sample 001 Base 1 Date 12/12/16 Time 10:56:42 < COD

4.6. DELETING A SAMPLE

If necessary, you can delete the measurements of sample analyzed by the T-UV-BCT .

This procedure may be necessary for deleting a testsample, eliminating a sample that is not representative of the effluent, doing the correlation again of the device at the beginning. You can work with two independent correlation bases. Each one can contain up to 10 samples.

It is preferable to change the correlation base in the following cases, rather than deleting the samples if your goal is to:

- Calibrate the device for a different effluent.
- Compensate for a temporary change in the nature of the effluent.

Choose the sample you wish to delete from the list	Lab Measurements ID COD TSS 001 31 12 002 114 26 < 003 >
 Select "Delete". ATTENTION: the deletion of a sample is definitive. 	1 Edit < 2 Delete>
 Once you have confirmed that you wish to delete, the sample is removed from the list. 	Delete Sample 3 Base 1 ?

Analysis 003 has been deleted.

4.7. MANAGING THE CALIBRATION BASES

The *T-UV-BCT* allows you to work with 2 independent calibration bases. In this way, you can calibrate your device for two different types of effluent or use a different calibration depending on the time of year.

The active base is the one in which all the results of the sample analyses will be placed, which you will then be able to edit using the menu **Lab measurements**.

The calibration used during automatic mode analyses Is independent of the active base. See chapter 4.10 .

4.8. SELECTING THE ACTIVE CALIBRATION BASE

Choose CALIBRATION from the menu	1 Setup < 2 Calibration > 2 Data export. 3 Maintenance
 Select the calibration base to be used for the sample analyses and for entering the laboratory measurements and choose Select 	1 Sample BASE 1 2 Lab BASE 1 < 3 Base select. > 4 Base assign.

NOTE: this base will be the one used for the sample analyses and for entering the lab measurements, but it will not modify the calibration base used for the measurement cycles.

1 Sample BASE 1 <1 BASE 1> 2 BASE 2
<pre>< 1 Select > 2 Edit</pre>

4.9. MANUAL ENTRY OF CALIBRATION COEFFICIENTS

• Choose CALIBRATION from the menu Press the keys $+$ $+$	1 Setup < 2 Calibration > 2 Data export. 3 Maintenance
• Select the base you wish to edit and choose Edit . Press the keys $+$ $+$	1 Sample BASE 1 2 Lab BASE 1 < 3 Base select. > 4 Base assign.
For example, choose BASE 1	1 Sample BASE 1 < 1 BASE 1> 2 BASE 2
• Press to select Edit	1 Select <2 Edit >

 In this way, you can visualize or modify manually the calibration coefficients of this base. Select the coefficient you wish to modify (COD or TSS coefficient) validate with . 	DataBase coefficients Base 1 GAIN COD 2.57 GAIN TSS 1.00 G TOC 1.00 G COLOR 1.00
	DataBase coefficients Base 1 COD gain 10.1

You cannot modify a coefficient calculated by the device using sample analyses and laboratory measurements.

In order to enter a coefficient manually, there must be no laboratory measurements for this parameter in the calibration base.	Data Base coefficients
 The calibration is either automatic: in this case, the coefficients between the sample analyses and the laboratory measurements are calculated by the <i>T-UV-BCT</i>, or the calibration is manual: you enter the coefficients for each parameter manually. 	Base Can't modify coef automaticaly calculated with DataBase Sample

4.10. ASSIGNING CALIBRATION BASES TO MEASUREMENT CHANNELS

Choose CALIBRATION from the menu	1 Setup < 2 Calibration > 2 Data export. 3 Maintenance
 Choose which calibration base should be used by the measurement probe. 	1 Sample BASE 1 2 Lab BASE 1 3 Base select. < 4 Base assign. >
 In the example opposite, the T-UV-BCT is using the no. 2 calibration base. Then validate with 	< Ch 1 Base 2 >

Chapter 5 CALIBRATION – procedure n°2

5. <u>CALIBRATION - PROCEDURE N°2</u>

5.1. PRINCIPE

The calibration procedure is what allows the correlation coefficients to be determined between the optical measurements SAC 254 and SAC 560 and the overall pollution measurements **COD or BOD or TOC and COLOR.**

This calibration should be carried out at least one after the device has been installed and may be repeated from time to time to ensure that the system is working properly. Before beginning, check the *T-UV-BCT* probe set-up and that it is working normally.

For measurements SAC254 and SAC560, no calibration is needed. Only measurements **TOC, COD, BOD** ou **COLOR** needs calibration.

Unlike calibration 1 procedure which determines calibration coefficients automatically, coefficients are calculated manually.

This procedure is used to calibrate parameters displayed on "ABSORPTION" screen. Parameters are chosen before ordering.

• one parameter between TOC / COD / BOD / SAC 254 parameter

• one parameter between SAC 560 / COLOR / TSS parameter.

Abso 0.0	Drption TOO mgO2/I COLOR	 Line 1 (UV measurement parameters)
U.U 12/12/2016	mgPt/l 08:10:37	 Line 2 (visible measurement parameters)

Parameters	Parameters displayed
TOC: Total Organic Carbon	= TOC
COD: Chemical Oxygen Demand	= COD
BOD : Biochemical Oxygen Demand	= BOD
TSS: Suspended Solids	= TSS
SAC 254: Spectral Absorption Coefficient	= SAC 254
SAC 560: Spectral Absorption Coefficient	= SAC 560
COLOR	= COLOR

5.2. EQUIPMENT REQUIRED

- a container filled with 2 litres of clear water for rincing the probe

- a sample of approximately 5 litres of the effluent
- an appropriate container for the sample that will go to the laboratory.

5.3. CALIBRATION PROCEDURE

The calibration procedure can be broken down into 4 steps:

	Before starting calibration, coefficients must be set to 1.	DataBase coefficients
Step 1	 Set to value 1.0 the calibration gain on the third and fourth line. 	GAIN COD 2.57 GAIN TSS 1.00 G TOC 1.00
	Use the the procedure on the next page	G COLOR 1.00

	Laboratory analysis of the sample.	
Step 3	 Put the quantity required for the laboratory analysis into an appropriate container. If the analysis cannot be carried out quickly, maintain the sample at temperature of 4°C. 	
	Analysis by the TULL DOT of the energie	
	Analysis by the $7-0V-BC7$ of the sample.	
Shan	• Plunge the probe into the sample and let the probe make several measurements	

Plunge the probe into the sample and let the probe make several measurements in normal mode operation (1 measurement each 2 minutes). Record date and time. If you have several samples, repeat the analyze for each sample.

calibration base selection Edit	
 Choose CALIBRATION from the menu. Press the keys + 	1 Setup < 2 Calibration > 2 Data export. 3 Maintenance
 Select the base to edit Press the keys + 	1 Sample BASE 1 2 Lab BASE 1 < 3 Base select. > 4 Base assign.
• For example, choose the BASE 1	1 Sample BASE 1 < 1 BASE 1> 2 BASE 2
Use to choose Edit	1 Select < 2 Edit >
You can visualize or modify manually the calibration coefficient for this procedure.	DataBase coefficients Base 1 GAIN COD 2.57 GAIN TSS 1.00 G TOC 1.00 G COLOR 1.00

- Select the coefficient you want to modify (DCO coefficient or suspended solid),
- Validate with

Data Base coefficients Base 1 COD gain 10.1

Sample

5.4. COEFFICIENTS DETERMINATION

1 - export measurement data file and read samples measurements values

date	hour	channel	COD (mg02/l)	TSS (mg/L)	TOC (mgO2/L)	COLOR	(mgPt/L
27/10/2016	14:18:52	1	244.7	0.6	95.931		0.555
27/10/2016	14:20:51	1	244.7	0.6	95.939		0.579
27/10/2016	14:22:51	1	244.6	0.6	95.929		0.575
27/10/2016	14:24:51	1	244.4	0.6	95.839		0.567

2 - enter gain coefficients for each parameter

efficients
1
2.57
1.00
1.00
1.00

Here, for example, we enter gain of 2 for TOC and gain of 5 for COLOR.

date	hour	channel	COD (mg02/l)	TSS (mg/L)	TOC (mgO2/L)	COLOR (mgPt/L
27/10/2016	14:18:52	1	244.7	0.6	95.931	0.555
27/10/2016	14:20:51	1	244.7	0.6	95.939	0.579
27/10/2016	14:22:51	1	244.6	0.6	95.929	0.575
27/10/2016	14:24:51	1	244.4	0.6	95.839	0.567
27/10/2016	14:29:34	1		0.6	191.693	2.804
27/10/2016	14:31:34	1		0.6	191.658	2.886
27/10/2016	14:33:34	1		0.6	191.458	2 .959

Absc	orption
192	
20	COLOR
J.U	mgPt/l
12/12/2016	08:10:37

Calibrated values

Chapter 6

6. USING THE TRANSMITTER

6.1. MEASUREMENT DISPLAYS

Once switched on, the T-UV-BCT displays measurement page 1. The measurements of the probe cover 4 pages.

To **choose the measurement channel** to be displayed, use and and •

Page 1: overall parameters					
COD (mgO2/l): Chemical Oxygen Demand	Absorption				
TSS: S uspended S olids Each measurement displayed on screen "measurement" must be calibrated using "Calibration 1 procedure.	0.0 0.0	COD mgO2/I TSS mg/I			
	24/11/2017	12:00:00			
Page 2: Absorptions					
SAC 254: absorption of the effluent by cm in the UV zone.	Absorption				
SAC 560 : absorption of the effluent by cm in the visible zone.	0.0	SAC254 AU/m			
Each measurement displayed on screen "Absorption" must	0.0	SAC560 AU/m			
be calibrated using "calibration 2 procedure.	12/12/2016	08:10:37			
Page 3: Optical Power					
UV Power indicates the power of the UV LED	Optical F	Power			
VIS Power indicates the power of the Visible LED.	UV Power				
•	VIS Power				
	12/12/2016	08:00:37			

Page 4: Status	
Information on the system status are displayed on this page: - time of the next analysis - temperature of the probe in °C - wait mode, analysis or cleaning (waiting, running, cleaning) - date and time	Status Next: 00:02:28 0.0°C Di1 D01 Running Di2 D02 D03 A01
 status of the on-off inputs DI1 and DI2 DI1 ■ activated, DI2 □ not activated 	Di1∎ D01□ Running Di2□ D02□ D03□
 Status of the relay outputs DO1, DO2, DO3 ✓ DO1 ■ activated, ✓ DO2 ■ activated, ✓ DO3 □ not activated 	Di1 □ D01 ■ Running Di2 □ D02 ■ D03 □
- bar graph indicating the level of the 4-20mA outputs Example AO1 : 10 mA AO2 15 mA 4 mA 10 mA 20 mA A01 A01 15 mA	

6.2. SAVING MEASUREMENTS TO A USB FLASH DRIVE

 The data exportation function allows you to save the data from the <i>T-UV-BCT</i> onto a USB flash drive in order to work on them with a PC. The <i>T-UV-BCT</i> can store several years' worth of measurements. We recommend that copying these measurements regularly onto a USB flash drive. Choose DATA EXPORT from the menu 	 Setup Calibration <u>A Data export</u> <u>A Maintenance</u>
 Define the period of measurements you wish to save onto the USB flash drive (start and end date). 	FROM Year month0804TO0904
 Insert the flash drive into the port situated on the left hand side of the transmitter, then validate with . 	Please insert USB
 The data will be copied onto the flash drive. The device creates a data file for each month so as to avoid files becoming to voluminous. The file names are given in the format Y2008M11.xls. They can be used directly with Microsoft Excel © or a compatible spreadsheet. 	Copying files . File: Y2008M11.xls

If the data is not recognized by your computer, verify the configuration of the decimal point.

6.3. DISPLAYING THE DATA USING MICROSOFT EXCEL©

To display the data in a curve using Microsoft Excel:

• Open the data file and click on column **D** (COD).

M	licrosoft Excel	- ficher ¥2017N	11 1.xls				
		d 👯 🏌 🖻	a 🖻 🍼 🔺	ν 🖙 🖌 🤮 Σ	f≈ ≩↓ Z↓	🛍 🚯 100% 👻 [) 🗸 🛛 Arial
1	2						
1	Fichier Edition	Affichage Inser	rtion Format (Outils Données Fené	Stre ? Adobe	PDF	
1-001	D1 •	- 00	D (maO2/l)	Tario Foundos 1 offe			
0		0	C (ingO2/i)	D I	E	F	C
1		hour	channel	COD /ma02/0	TSS	SAC 254/IIA/m)	SAC 560 (IIA/m)
2	01/01/2016	00.02.45	trainer 1	116.3	133	52 578	1 59
- 3	01/01/2016	00:02:45	1	116.3	1,0	52,570	1 581
4	01/01/2010	00:32:45	1	116.3	1,0	52,545	1,501
5	01/01/2016	00:32:45	1	116,5	1,0	52,501	1,596
6	01/01/2016	01:02:45	1	116.3	1,0	52,525	1,555
7	01/01/2016	01:17:45	1	116.2	1,0	52,538	1.62
8	01/01/2016	01:32:45	1	116.1	1.6	52,500	1 627
9	01/01/2016	01:47:45	1	116	1.6	52 502	1.64
10	01/01/2016	02:02:45	1	116	1,0	52 503	1.656
11	01/01/2016	02:17:45	4	116.2	17	52 571	1.66
12	01/01/2016	02:32:45	- i	116.1	17	52 557	1 658
13	01/01/2016	02:47:45	1	116	17	52,511	1,600
14	01/01/2016	03:02:45	1	116	17	52 534	1 688
15	01/01/2016	03:17:45	1	115.9	17	52 499	1 686
16	01/01/2016	03:32:45	1	115.9	17	52 477	1,696
17	01/01/2016	03:47:45	1	115.8	17	52,438	1,704
18	01/01/2016	04:02:45	1	115.8	17	52,466	1.725
19	01/01/2016	04:17:45	1	115.9	17	52 521	1.721
20	01/01/2016	04:32:45	1	115.7	1.7	52,462	1.74
21	01/01/2016	04:47:45	1	115.8	1,7	52,473	1,739
22	01/01/2016	05:02:45	1	115,6	1,8	52,41	1,754
23	01/01/2016	05:17:45	1	115,7	1,8	52,485	1,757
24	01/01/2016	05:32:45	1	115,6	1,8	52,455	1,782
25	01/01/2016	05:47:45	1	115,6	1,8	52,47	1,783
26	01/01/2016	06:02:45	1	115,6	1,8	52,458	1,785
27	01/01/2016	06:17:45	1	115,5	1,8	52,411	1,789
28	01/01/2016	06:32:45	1	115,2	1,8	52,317	1,81
29	01/01/2016	06:47:45	1	115,4	1,8	52,379	1,809
30	01/01/2016	07:02:45	1	115,5	1,8	52,442	1,824
31	01/01/2016	07:17:45	1	115,3	1,8	52,369	1,831
32	01/01/2016	07:32:45	1	115,3	1,8	52,363	1,847
33	01/01/2016	07:47:45	1	115,2	1,9	52,361	1,859
34	01/01/2016	08:02:45	1	115,3	1,9	52,415	1,87
35	01/01/2016	08:17:45	1	115,3	1,9	52,386	1,865
36	01/01/2016	08:32:45	1	115,2	1,9	52,383	1,887
37	01/01/2016	08:47:45	1	115,1	1,9	52,344	1,878
38	01/01/2016	09:02:45	1	115,1	1,9	52,339	1,901
39	01/01/2016	09:17:45	1	115,1	1,9	52,348	1,919
40	01/01/2016	09:32:45	1	115	1,9	52,348	1,933
41	01/01/2016	09:47:45	1	115,1	1,9	52,353	1,916
42	01/01/2016	10:02:45	1	114,9	1,9	52,285	1,935
43	01/01/2016	10:17:45	1	114,8	2	52,276	1,951
44	01/01/2016	10:32:45	1	114,7	2	52,246	1,958
45	01/01/2016	10:47:45	1	114,8	2	52,274	1,951

- Click on the icon 🛄,
- Select [Courbes] and Validate by clicking on [terminer].

Assistant Graphique	- Étape 1 sur 4 - Type de Graphi ? 🔀
Assistant Graphique Types standard Types Type de graphique : Histogramme Barres Courbes Secteurs Nuages de points Aires Anneau Radar Surface	- Étape 1 sur 4 - Type de Graphi ? X s personnalisés Sous-type de graphique :
ti Bulle Boursier Cylindre ▲ Cône	
	Courbes avec marques affichées à chaque point.
	Maintenir appuyé pour <u>v</u> isionner
Annul	ler < Précédent Suivant > Terminer

Chapter 7 MAINTENANCE

7. MAINTENANCE

Maintenance operations are necessary to keep the device functioning correctly. They ensure that the measurements made are sound as well as prolonging the lifespan of the device.

The *T-UV-BCT* only requires minimum maintenance.

7.1. ROUTINE MAINTENANCE

Care of the measurement head

- Remove the probe from the liquid in which it is immersed
- Rinse the probe with clean water
- Clean the measurement windows with a fine brush
- Reposition the probe

Condition of the UV LED and the Visible LED

The luminosity levels of the LEDs should be verified every two months to ensure that they do not need replacing. To do this, access the STATUS pag of the measurement menu.

Optica	I Power
UV Powe	
VIS Powe	
12/12/2016	08:00:37

The "UV Power" level bar indicates the power of the UV LED. The "VIS Power" level bar indicates the power of the VIS LED.

7.2. CURRENT OUTPUT CALIBRATION

Choose SETUP from the menu	< 1 Setup > 2 Calibration 3 Data export. 4 Maintenance
Choose MAINTENANCE	 1 Setup 2 Calibration 3 data export < 4 maintenance >
Choose AO CALIB.	<1 AO calib.> 2 Sys. files 3 Upgrade 4 Manufacture
Choose the CURRENT OUTPUT NO.1 or CURRENT OUTPUT NO.2.	< Current out.1 > Current out.2
 Once the channel has been selected, the transmitter generates a first current value close to 8mA on the output. Measure this current with an ammeter and enter the exact value into the dialogue box. 	4-20mA CALIBRATION value 1: 8.12

The transmitter will then generate a second current of close to 16 mA on the output.	4-20mA CALIBRATION
 Measure this current with an ammeter and enter the exact value into the dialogue box to 2 decimal places 	value 2: 16.29
Once the two values of the currents measured have been entered, the device calculates the calibration and asks for	4-20mA CALIBRATION
 verification. Verify the 8 mA value 	Check 8mA Value
 Verify the 16 mA value 	4-20mA CALIBRATION
 If the two points are correct, then the calibratiois finished. If there is too large a gap (> - 0.04mA) between the value measured and the value displayed by the transmitter, the calibration procedure must be repeated. 	Check 16mA Value

USER MANUAL

7.3. SYSTEM FILES

Choose SETUP from the menu	< 1 Setup > 2 Calibration 3 Data export. 4 Maintenance
Choose MAINTENANCE	 1 Setup 2 Calibration 3 data export < 4 maintenance >
 Choisir SYS. FILES. Le menu SYS. FILES. menu is used to generate a file that will be used by TOSHCON in case of maintenance operation. 	1 AO calib. <2 Sys. files> 3 Upgrade 4 Manufacturer
Enter the start and end date of the file	FROMYearmonth1608TO1701
 Insert the flash drive into the port situated on the left hand side of the transmitter, then validate with . 	Please insert USB

USER MANUAL

7.4. SOFTWARE UPGRADES

6		
•	Choose SETUP from the menu	< 1 Setup > 2 Calibration 3 Data export. 4 Maintenance
•	Choose maintenance	 1 Setup 2 Calibration 3 data export < 4 maintenance >
		1 AO calib. 2 Sys. files < <u>3 Upgrade</u> > 4 Manufacturer
Ste	ps involved in an update:	
1.	the system reinitializes	
Ζ.	containing the update file (during this phase, the alarm	
3.	if the flash drive is not present or if the update file is not found on the flash drive, the system restarts as usual with the same version of the software.	T-UV-BCT
4.	if the flash drive is detected and the update file is found, the update begins (during the update process, the alarm signal lights 1 and 2 flash alternately several times a second).	
5.	when the update is complete, the system restartswith the new version of the software.	

Note 1: When you start up the transmitter, you can find out which version of the software is being used. The version is shownat the bottom right of the start-up screen.

Note 2: When starting up, the transmitter also detects the presence of the measurement probe and indicates its characteristics.

7.5. MANUFACTURER

Function reserved to TOSHCON.

1 AO calib.
2 Sys. files
3 Upgrade
<4 Manufacturer>

Chapter 8 APPENDICES

8. <u>APPENDICES</u>

8.1. TECHNICAL SPECIFICATIONS

	Min	Typical	Max	Unit
Relay outputs				
Maximum current			8	Amp
Maximum voltage			250	Volt AC
24V or 5V inputs				
Voltage contact open (depending on jumper		24/5	30/8	V
position J9/J10)				
Current contact closed		13		mA
4-20mA Outputs				
Output current	4		20	mA
Output voltage			7	V
Load	0	250	350	ohms
ModBus Liaison				
Theoretical range at 9600bps on an adapted		1000		metres
twisted pair				
Line termination impedance (can be disactivated)	20	1 C	hms	
Line polarization impedance (can be disactivated)		470		Ohms
Housing				
Height		130		mm
Width		130		mm
Depth		100		mm
Weight		1kg		Kg
Protection IP66 (NEMA 4X)				
Probe				
Height		250		mm
Diameter		55		mm
Weight		5		Kg
Protection IP68 16 bars			10	bars
Measurement range				
Measurement range	0		2500	/m
Absorption resolution		0.1		/m
COD measurement range on solution KC8H5O4	0 g/l		1000	m
COD resolution on solution KC8H5O4		1.0		mg/l
Environment				
Ambient temperature	5	25	45	°C
Power supply				
Current	110		230	V AC
Voltage	50		60	Hz

Information pertaining to a probe T-UV-BCT equipped with software version 1.00. The characteristics of the equipment, as well as its documentation may be modified by the manufacturer without prior consultation.

USER MANUAL

8.2. MAINTENANCE SHEET

Intervention	1		
Maintenance date			
User name			
Serial number of the T-UV-BCT			
Verifications			
Transmitter condition	Good	Average	Problem
Probe linking cable condition	Good	Average	Problem
Cleanliness of probe head	Good	Average	Problem
Cleanliness of measurement cell	Good	Average	Problem
Cleaning module condition	Good	Poor	Problem
UV LED level	Good	Poor	Problem
VISIBLE LED Level	Good	Poor	Problem
Cleaning			
Probe head cleaning	Yes	No	
Long term disuse			
	Yes	No	
Notes			
	Yes	No	

